Identifying Lanthanide Energy Levels in Semiconductor Nanoparticles Enables Tailored Multicolor Emission through Rational Dopant Combinations

掺杂剂 镧系元素 纳米颗粒 材料科学 合理设计 纳米技术 半导体 兴奋剂 光电子学 化学 有机化学 离子
作者
Gouranga H. Debnath,Prasun Mukherjee,David H. Waldeck
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.5c00116
摘要

ConspectusThe unique photon emission signatures of trivalent lanthanide cations (Ln3+, where Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) enables multicolor emission from semiconductor nanoparticles (NPs) either through doping multiple Ln3+ ions of distinct identities or in combination with other elements for the creation of next-generation light emitting diodes (LEDs), lasers, sensors, imaging probes, and other optoelectronic devices. Although advancements have been made in synthetic strategies to dope Ln3+ in semiconductor NPs, the dopant(s) selection criteria have hinged largely on trial-and-error. This combinatorial approach is often guided by treating NP-dopant(s) energy transfer dynamics through the lens of spectral overlap. Over the past decade, however, we have demonstrated that the spectral outcomes correlate better with the placement of Ln3+ energy levels with respect to the band edges of the semiconductor, and oxide, host.In this Account, we describe how the Ln3+ energy level alignments affect the dopant emission intensities and dictate interdopant energy transfer processes in semiconductor nanoparticle hosts. This Account begins with a concise primer on the emission characteristics of trivalent lanthanides, the challenges that are associated with realizing meaningful lanthanide luminescence, and how semiconductor nanoparticles can act as a host to sensitize lanthanide emission. We then describe a semiempirical approach that can be used to place the lanthanide ground and luminescent energy levels with respect to the band edges of the host semiconductor nanoparticle. The ability of this model to track and predict the lanthanide sensitization efficiency is illustrated for singly doped zinc sulfide (ZnS), titanium dioxide (TiO2), and cesium lead chloride (CsPbCl3) perovskite hosts. Next, we discuss how knowledge of energy level offsets can be used to select dopant(s) for tunable multicolor emission by identifying different charge trapping processes for semiconductors doped with single and multiple lanthanides and discussing their impact on sensitization outcomes. Following this discussion, the Account lists viable Ln3+ combinations in ZnS NPs based on the charge trapping model and shows the limitations of spectral overlap models in predicting viable Ln3+ dopant combinations. Feasible f-f and d-f codopant combinations based on charge trapping are presented for TiO2 and CsPbCl3 NPs. The intricacies of interdopant energy migration and spin considerations that dictate the dopant(s) sensitization efficiencies are made known. Finally, we use these considerations to predict NP-dopant(s) combinations that should exhibit concerted emissions from the blue to the near-infrared (NIR) region, thereby enabling the design of bespoke optoelectronic properties. The Account ends with some forward-looking thoughts, arguing for the need to develop better quantitative models in order to explore the Ln3+ sensitization mechanisms and presenting ideas for applications of doped semiconductor NPs in energy and health that would be aided by interdopant energy transfer dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助jj采纳,获得10
1秒前
lonely完成签到,获得积分10
1秒前
咯咚发布了新的文献求助10
2秒前
2秒前
yzl完成签到 ,获得积分10
3秒前
bkagyin应助mol采纳,获得10
3秒前
Pursue。发布了新的文献求助10
4秒前
坚定平卉发布了新的文献求助10
4秒前
hyhy完成签到,获得积分10
5秒前
5秒前
隐形曼青应助ytx采纳,获得10
5秒前
JACK发布了新的文献求助30
5秒前
冷傲乐萱完成签到,获得积分10
5秒前
6秒前
ss发布了新的文献求助10
6秒前
7秒前
a1313发布了新的文献求助10
7秒前
酷酷夜阑发布了新的文献求助10
8秒前
jj完成签到,获得积分10
8秒前
善学以致用应助坚定平卉采纳,获得10
8秒前
清风完成签到,获得积分10
9秒前
9秒前
9秒前
不加糖发布了新的文献求助10
10秒前
左旋多巴完成签到,获得积分10
10秒前
10秒前
11秒前
黄bb完成签到,获得积分10
12秒前
RUI1128发布了新的文献求助10
12秒前
许小仙儿完成签到,获得积分10
12秒前
KX2024发布了新的文献求助10
12秒前
G.Huang完成签到,获得积分10
12秒前
研友_LJGpan应助echo采纳,获得10
12秒前
桃博完成签到,获得积分10
12秒前
斯文败类应助一个刚刚采纳,获得10
13秒前
13秒前
14秒前
木日发布了新的文献求助10
15秒前
presumme发布了新的文献求助10
15秒前
淡定硬币发布了新的文献求助10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735334
求助须知:如何正确求助?哪些是违规求助? 3279318
关于积分的说明 10014051
捐赠科研通 2995959
什么是DOI,文献DOI怎么找? 1643767
邀请新用户注册赠送积分活动 781440
科研通“疑难数据库(出版商)”最低求助积分说明 749398