共聚物
反向
计算机科学
块(置换群论)
反问题
网络拓扑
参数空间
领域(数学)
贝叶斯优化
算法
材料科学
拓扑(电路)
数学优化
数学
人工智能
组合数学
数学分析
操作系统
复合材料
统计
纯数学
聚合物
几何学
作者
Qingshu Dong,Xiangrui Gong,Kangrui Yuan,Ying Jiang,Liangshun Zhang,Weihua Li
出处
期刊:ACS Macro Letters
[American Chemical Society]
日期:2023-03-08
卷期号:12 (3): 401-407
被引量:11
标识
DOI:10.1021/acsmacrolett.3c00020
摘要
Variable chain topologies of multiblock copolymers provide great opportunities for the formation of numerous self-assembled nanostructures with promising potential applications. However, the consequent large parameter space poses new challenges for searching the stable parameter region of desired novel structures. In this Letter, by combining Bayesian optimization (BO), fast Fourier transform-assisted 3D convolutional neural network (FFT-3DCNN), and self-consistent field theory (SCFT), we develop a data-driven and fully automated inverse design framework to search for the desired novel structures self-assembled by ABC-type multiblock copolymers. Stable phase regions of three exotic target structures are efficiently identified in high-dimensional parameter space. Our work advances the new research paradigm of inverse design in the field of block copolymers.
科研通智能强力驱动
Strongly Powered by AbleSci AI