数学
李普希茨连续性
正多边形
可微函数
能量泛函
操作员(生物学)
p-拉普拉斯算子
期限(时间)
非线性系统
领域(数学分析)
纯数学
拉普拉斯算子
凸函数
有效域
能量(信号处理)
空格(标点符号)
次导数
凹函数
同种类的
数学分析
凸优化
组合数学
几何学
边值问题
转录因子
基因
化学
抑制因子
统计
哲学
量子力学
生物化学
语言学
物理
作者
Juan Carlos Ortiz Chata,Marcos T. O. Pimenta,Sergio Segura de León
标识
DOI:10.1016/j.jmaa.2023.127149
摘要
In this paper, we analyze a “concave-convex” type problem involving the 1-Laplacian operator in a general Lipschitz–continuous domain and prove the existence of two positive solutions. Owing to 1-Laplacian is 0-homogeneous, the “concave” term must be singular. Hence, we should deal with an energy functional having two non–differentiable terms: the total variation and that one coming from the singular term. Due to these difficulties, we do not get solutions as critical points of the energy functional defined in the BV(Ω) space. Instead, we study problems involving the p-Laplacian operator and let p go to 1.
科研通智能强力驱动
Strongly Powered by AbleSci AI