Method to improve the classification accuracy by in situ laser cleaning of painted metal scraps during laser-induced breakdown spectroscopy based sorting

激光诱导击穿光谱 弹丸 材料科学 激光烧蚀 激光器 光谱学 分类 分析化学(期刊) 废品 阴影照相术 光学 化学 冶金 环境化学 计算机科学 程序设计语言 物理 量子力学
作者
Jaepil Lee,Sungho Shin,In-Chang Jang,Seongjun Bae,Sungho Jeong
出处
期刊:Plasma Science & Technology [IOP Publishing]
标识
DOI:10.1088/2058-6272/ad9bfd
摘要

Abstract Scrap metals are typically covered with surface contaminants, such as paint, dust, and rust, which can significantly affect the emission spectrum during laser-induced breakdown spectroscopy (LIBS) based sorting. In this study, the effects of paint layers on metal surfaces during LIBS classification were investigated. LIBS spectra were collected from metal surfaces painted with black and white paints by ablation with a nanosecond pulsed laser (wavelength = 1064 nm, pulse width = 7 ns). For the black-painted samples, the LIBS spectra showed a broad background emission, emission lines unrelated to the target metals, large shot-to-shot variation, and a relatively low signal intensity of the target metal, causing poor classification accuracy even at high shot numbers. Cleaning the black paint layer by ablating over a wide area prior to LIBS analysis resulted in high classification accuracy with fewer shot numbers. A method to determine the number of cleaning shots necessary to obtain high classification accuracy and high throughput is proposed on the basis of the change in LIBS signal intensity during cleaning shots. For the white-painted samples, the paint peeled off the metal surface after the first shot, and strong LIBS signals were measured after the following shot, which were attributed to the nanoparticles generated by the ablation of the paint, allowing an accurate classification after only two shots. The results demonstrate that different approaches must be employed depending on the paint color to achieve high classification accuracy with fewer shot numbers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rochmannn完成签到,获得积分10
1秒前
内向秋寒发布了新的文献求助10
3秒前
4秒前
nekoz发布了新的文献求助10
4秒前
水雾发布了新的文献求助10
5秒前
6秒前
张六六完成签到,获得积分10
7秒前
7秒前
Lee完成签到 ,获得积分10
9秒前
蓝天应助niko采纳,获得10
10秒前
愉快天亦发布了新的文献求助10
11秒前
zhanlan发布了新的文献求助10
12秒前
Aries完成签到,获得积分20
12秒前
勤奋橘子完成签到,获得积分10
13秒前
SciGPT应助leiyuekai采纳,获得10
13秒前
14秒前
缓慢凤凰发布了新的文献求助10
14秒前
烟花应助香菜头采纳,获得30
16秒前
量子星尘发布了新的文献求助10
17秒前
wanci应助zzh采纳,获得10
18秒前
19秒前
天天快乐应助落日出逃采纳,获得10
20秒前
赵永刚完成签到,获得积分10
20秒前
Aries关注了科研通微信公众号
20秒前
阿杰完成签到,获得积分10
21秒前
柒染完成签到 ,获得积分10
23秒前
小天完成签到 ,获得积分10
24秒前
25秒前
CR7应助李嘉图采纳,获得20
25秒前
我是老大应助曹博盛采纳,获得30
26秒前
小天关注了科研通微信公众号
27秒前
hao发布了新的文献求助10
28秒前
huangman完成签到,获得积分10
30秒前
31秒前
wz完成签到,获得积分10
33秒前
之组长了完成签到 ,获得积分10
33秒前
34秒前
苏世完成签到,获得积分10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707