Machine learning-driven prediction of biochar adsorption capacity for effective removal of Congo red dye

生物炭 刚果红 吸附 化学工程 环境科学 化学 材料科学 有机化学 工程类 热解
作者
Shubham Yadav,P. K. Rajput,P. Balasubramanian,Chong Liu,Fayong Li,Pengyan Zhang
标识
DOI:10.1007/s44246-024-00168-3
摘要

Abstract Congo red, a widely utilized dye in the textile industry, presents a significant threat to living organisms due to its carcinogenic properties and non-biodegradable nature. This study proposes a data-driven machine-learning approach to optimize biochar characteristics and environmental conditions to maximize the adsorption capacity of biochar for the removal of Congo red dye. Therefore, six machine learning models were trained and tested on a dataset containing eleven input parameters (related to biochar properties and environmental conditions) and adsorption capacity. The models were evaluated using performance metrics such as R-squared ( R 2 ), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). With the highest R 2 (0.9785) and lowest RMSE (0.1357), Random Forest Regression (RF) outperformed other machine learning models. DT and XGB also performed well, achieving slightly lower R 2 values of 0.9741 and 0.9577, respectively. The LR model performed the worst, with the lowest R 2 (0.4575) and the highest RMSE (0.6821). Moreover, the reliability of these models was validated using a 10-fold cross-validation method. RF once again performed the best with an R 2 value of 0.9762. Feature analysis revealed that the initial dye concentration relative to biochar dosage ( C 0 ), specific surface area ( BET ), and pore volume ( PV ) are the most significant factors affecting the dye adsorption capacity of biochar, while parameters such as carbon content ( C ), the oxygen and nitrogen to carbon molar ratio [ (O + N)/C ], and pore diameter ( D ) had minimal impact. This research demonstrates that machine learning models can accurately predict biochar’s contaminant adsorption capacity, enhancing wastewater treatment and promoting efficient, cost-effective environmental management. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
our完成签到,获得积分10
刚刚
清欢昌丽发布了新的文献求助10
刚刚
1秒前
DYDY发布了新的文献求助10
1秒前
XSY发布了新的文献求助10
1秒前
张时婕完成签到 ,获得积分10
1秒前
2秒前
xx发布了新的文献求助10
2秒前
3秒前
整齐冰凡完成签到 ,获得积分10
3秒前
LEE发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
酷酷妙梦发布了新的文献求助10
5秒前
5秒前
XXXXH完成签到,获得积分10
6秒前
Hello应助勤恳的烤鸡采纳,获得30
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
光电彭于晏完成签到,获得积分10
7秒前
小火苗发布了新的文献求助10
8秒前
内向平萱发布了新的文献求助10
8秒前
无辜鞋子完成签到,获得积分10
8秒前
8秒前
二月why发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
9秒前
Jialing完成签到,获得积分10
9秒前
10秒前
10秒前
逗逗完成签到,获得积分10
10秒前
清风发布了新的文献求助30
11秒前
叮叮发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
酷酷妙梦完成签到,获得积分10
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771