🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Evaluation of ChatGPT for Nutrient Content Estimation from Meal Photographs

餐食 食品科学 营养物 估计 生物 生态学 管理 经济
作者
Cathal O’Hara,Gráinne Kent,Angela C. Flynn,Eileen R. Gibney,Claire Timon
出处
期刊:Nutrients [MDPI AG]
卷期号:17 (4): 607-607
标识
DOI:10.3390/nu17040607
摘要

Background/Objectives: Advances in artificial intelligence now allow combined use of large language and vision models; however, there has been limited evaluation of their potential in dietary assessment. This study aimed to evaluate the accuracy of ChatGPT-4 in estimating nutritional content of commonly consumed meals using meal photographs derived from national dietary survey data. Methods: Meal photographs (n = 114) were uploaded to ChatGPT and it was asked to identify the foods in each meal, estimate their weight, and estimate the nutrient content of the meals for 16 nutrients for comparison with the known values using precision, paired t-tests, Wilcoxon signed rank test, percentage difference, and Spearman correlation (rs). Seven dietitians also estimated energy, protein, and carbohydrate content of thirty-eight meal photographs for comparison with ChatGPT using intraclass correlation (ICC). Results: Comparing ChatGPT and actual meals, ChatGPT showed good precision (93.0%) for correctly identifying the foods in the photographs. There was good agreement for meal weight (p = 0.221) for small meals, but poor agreement for medium (p < 0.001) and large (p < 0.001) meals. There was poor agreement for 10 of the 16 nutrients (p < 0.05). Percentage difference from actual values was >10% for 13 nutrients, with ChatGPT underestimating 11 nutrients. Correlations were adequate or good for all nutrients with rs ranging from 0.29 to 0.83. When comparing ChatGPT and dietitians, the ICC ranged from 0.31 to 0.67 across nutrients. Conclusions: ChatGPT performed well for identifying foods, estimating weights of small portion sizes, and ranking meals according to nutrient content, but performed poorly for estimating weights of medium and large portion sizes and providing accurate estimates of nutrient content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助环境龙采纳,获得10
刚刚
14秒前
KaK完成签到,获得积分10
25秒前
33秒前
Augustines完成签到,获得积分10
1分钟前
科目三应助啦啦啦采纳,获得10
1分钟前
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
1分钟前
星际舟发布了新的文献求助10
1分钟前
2分钟前
kang完成签到,获得积分20
2分钟前
zhangyy发布了新的文献求助10
2分钟前
实验体8567号完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
星际舟发布了新的文献求助10
3分钟前
3分钟前
1L发布了新的文献求助30
3分钟前
余念安完成签到 ,获得积分10
3分钟前
科研通AI5应助lty采纳,获得10
4分钟前
李爱国应助1L采纳,获得10
4分钟前
研友_850aeZ完成签到,获得积分0
4分钟前
WX完成签到 ,获得积分10
4分钟前
XTechMan完成签到,获得积分10
5分钟前
Nola完成签到 ,获得积分10
5分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
SCI发布了新的文献求助10
5分钟前
6分钟前
阿泽发布了新的文献求助10
6分钟前
月息完成签到 ,获得积分10
6分钟前
6分钟前
俊逸的蛋挞完成签到,获得积分20
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Comprehensive Computational Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3603940
求助须知:如何正确求助?哪些是违规求助? 3172055
关于积分的说明 9573089
捐赠科研通 2878148
什么是DOI,文献DOI怎么找? 1580818
邀请新用户注册赠送积分活动 743245
科研通“疑难数据库(出版商)”最低求助积分说明 725878