冲程(发动机)
肺炎
钥匙(锁)
医学
机器学习
急性中风
人工智能
计算机科学
重症监护医学
内科学
工程类
机械工程
计算机安全
组织纤溶酶原激活剂
作者
Ahmad A. Abujaber,Said Yaseen,Abdulqadir J. Nashwan,Naveed Akhtar,Yahia Imam
标识
DOI:10.1016/j.jstrokecerebrovasdis.2024.108200
摘要
Stroke-associated Hospital Acquired Pneumonia (HAP) significantly impacts patient outcomes. This study explores the utility of machine learning models in predicting HAP in stroke patients, leveraging national registry data and SHapley Additive exPlanations (SHAP) analysis to identify key predictive factors.
科研通智能强力驱动
Strongly Powered by AbleSci AI