Screening of Silver‐Based Single‐Atom Alloy Catalysts for NO Electroreduction to NH3 by DFT Calculations and Machine Learning

合金 催化作用 Atom(片上系统) 材料科学 化学 计算化学 纳米技术 冶金 计算机科学 有机化学 嵌入式系统
作者
Jieyu Liu,Shuoao Wang,Yunyan Tian,Haiqiang Guo,Xing Chen,Weiwei Lei,Yifu Yu,Changhong Wang
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202414314
摘要

Exploring NO reduction reaction (NORR) electrocatalysts with high activity and selectivity toward NH3 is essential for both NO removal and NH3 synthesis. Due to their superior electrocatalytic activities, single‐atom alloy (SAA) catalysts have attracted considerable attention. However, the exploration of SAAs is hindered by a lack of fast yet reliable prediction of catalytic performance. To address this problem, we comprehensively screened a series of transition‐metal atom doped Ag‐based SAAs. This screening process involves regression machine learning (ML) algorithms and a compressed‐sensing data‐analytics approach parameterized with density‐functional inputs. The results demonstrate that Cu/Ag and Zn/Ag can efficiently activate and hydrogenate NO with small Φmax(η), a grand‐canonical adaptation of the Gmax(η) descriptor, and exhibit higher affinity to NO over H adatoms to suppress the competing hydrogen evolution reaction. The NH3 selectivity is mainly determined by the s orbitals of the doped single‐atom near the Fermi level. The catalytic activity of SAAs is highly correlated with the local environment of the active site. We further quantified the relationship between the intrinsic features of these active sites and Φmax(η). Our work clarifies the mechanism of NORR to NH3 and offers a design principle to guide the screen of highly active SAA catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you发布了新的文献求助10
1秒前
钢笔完成签到,获得积分10
2秒前
洋洋完成签到 ,获得积分10
2秒前
甜美慕梅发布了新的文献求助20
3秒前
科研通AI5应助byyyak采纳,获得10
5秒前
传奇3应助xia夏采纳,获得10
6秒前
乐乐应助IVAN采纳,获得10
7秒前
彭于晏应助juziyaya采纳,获得200
7秒前
9秒前
10秒前
深情安青应助不想做实验采纳,获得10
11秒前
SYLH应助zz采纳,获得10
11秒前
实验好难应助guoguoguo采纳,获得10
13秒前
huangbing123发布了新的文献求助10
14秒前
14秒前
14秒前
壮观小笼包关注了科研通微信公众号
14秒前
15秒前
15秒前
16秒前
薛华倩发布了新的文献求助10
16秒前
18秒前
方方发布了新的文献求助10
18秒前
19秒前
xiao发布了新的文献求助10
19秒前
20秒前
徐老师完成签到,获得积分10
20秒前
852应助无聊的凡阳采纳,获得10
20秒前
学术蝗虫完成签到,获得积分10
20秒前
lxr完成签到,获得积分10
22秒前
Owen应助大狒狒采纳,获得10
22秒前
甜美慕梅完成签到,获得积分10
22秒前
小曦发布了新的文献求助10
22秒前
雨林霖完成签到,获得积分10
23秒前
瘦瘦的烤鸡完成签到,获得积分10
23秒前
24秒前
yy发布了新的文献求助10
25秒前
xia夏发布了新的文献求助10
25秒前
求知若渴的小王完成签到,获得积分10
26秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736207
求助须知:如何正确求助?哪些是违规求助? 3279988
关于积分的说明 10017941
捐赠科研通 2996592
什么是DOI,文献DOI怎么找? 1644198
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749491