Kyle Mangano,Robert G. Guenette,Spencer Hill,Shiqian Li,Seung Wook Yang,Kate S. Ashton,Patrick Ryan Potts
标识
DOI:10.1101/2024.08.13.607762
摘要
ABSTRACT In targeted protein degradation (TPD) a protein of interest is degraded by chemically induced proximity to an E3 ubiquitin ligase. One limitation of using TPD therapeutically is that most E3 ligases have broad tissue expression, which can contribute to toxicity via target degradation in healthy cells. Many pathogenic and oncogenic viruses encode E3 ligases (vE3s), which de facto have strictly limited expression to diseased cells. Here, we provide proof-of-concept for Vi ral E3 P an- E ssential R emoving Ta rgeting C himeras (VIPER-TACs) that are bi-functional molecules that utilize viral E3 ubiquitin ligases to selectively degrade pan-essential proteins and eliminate diseased cells. We find that the human papillomavirus (HPV) ligase E6 can degrade the SARS1 pan-essential target protein in a model of HPV-positive cervical cancer to selectively kill E6 expressing cancer cells. Thus, VIPER-TACs have the capacity to dramatically increase the therapeutic window, alleviate toxicity concerns, and ultimately expand the potential target space for TPD.