Multi-view scene matching with relation aware feature perception

人工智能 计算机科学 匹配(统计) 公制(单位) 模式识别(心理学) 关系(数据库) 特征(语言学) 一致性(知识库) 感知 特征提取 比例(比率) 计算机视觉 数据挖掘 数学 地理 语言学 统计 哲学 神经科学 运营管理 地图学 生物 经济
作者
Bo Sun,Ganchao Liu,Yuan Yuan
出处
期刊:Neural Networks [Elsevier]
卷期号:180: 106662-106662
标识
DOI:10.1016/j.neunet.2024.106662
摘要

For scene matching, the extraction of metric features is a challenging task in the face of multi-source and multi-view scenes. Aiming at the requirements of multi-source and multi-view scene matching, a siamese network model for Spatial Relation Aware feature perception and fusion is proposed. The key contributions of this work are as follows: (1) Seeking to enhance the coherence of multi-view image features, we investigate the relation aware feature perception. With the help of spatial relation vector decomposition, the distribution consistency perception of image features in the horizontal H→ and vertical W→ directions is realized. (2) In order to establish the metric consistency relationship, the large-scale local information perception strategy is studied to realize the relative trade-off scale selection under the size of mainstream aerial images and satellite images. (3) After obtaining the multi-scale metric features, in order to improve the metric confidence, the feature selection and fusion strategy is proposed. The significance of distinct feature levels in the backbone network is systematically assessed prior to fusion, leading to an enhancement in the representation of pivotal components within the metric features during the fusion process. The experimental results obtained from the University-1652 dataset and the collected real scene data affirm the efficacy of the proposed method in enhancing the reliability of the metric model. The demonstrated effectiveness of this method suggests its applicability to diverse scene matching tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
winterm发布了新的文献求助10
4秒前
shinysparrow应助MAEDCHEN采纳,获得200
4秒前
6秒前
6秒前
7秒前
10秒前
mym完成签到 ,获得积分20
11秒前
了了了发布了新的文献求助10
11秒前
12秒前
小马甲应助zhw297采纳,获得10
12秒前
13秒前
鳗鱼凡旋发布了新的文献求助10
13秒前
Rui完成签到,获得积分10
13秒前
winterm完成签到,获得积分20
14秒前
Culto发布了新的文献求助10
16秒前
16秒前
彩色半烟完成签到,获得积分10
16秒前
fx完成签到,获得积分10
16秒前
17秒前
17秒前
栖xx发布了新的文献求助10
18秒前
亿元发布了新的文献求助10
19秒前
Maestro_S完成签到,获得积分0
20秒前
科研通AI2S应助abner采纳,获得10
22秒前
图图不秃发布了新的文献求助10
22秒前
文泽完成签到,获得积分10
23秒前
炸你的泡泡糖完成签到,获得积分10
24秒前
啦啦啦完成签到 ,获得积分10
25秒前
26秒前
橘子汽水完成签到,获得积分10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
wwz应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023