MaskTrack: Auto-Labeling and Stable Tracking for Video Object Segmentation

计算机视觉 人工智能 分割 视频跟踪 对象(语法) 计算机科学 跟踪(教育) 心理学 教育学
作者
Zhenyu Chen,Pengfei Zhang,Ping Hu,Huchuan Lu,You He
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3469959
摘要

Video object segmentation (VOS) has witnessed notable progress due to the establishment of video training datasets and the introduction of diverse, innovative network architectures. However, video mask annotation is a highly intricate and labor-intensive task, as meticulous frame-by-frame comparisons are needed to ascertain the positions and identities of targets in the subsequent frames. Current VOS benchmarks often annotate only a few instances in each video to save costs, which, however, hinders the model's understanding of the complete context of the video scenes. To simplify video annotation and achieve efficient dense labeling, we introduce a zero-shot auto-labeling strategy based on the segment anything model (SAM), enabling it to densely annotate video instances without access to any manual annotations. Moreover, although existing VOS methods demonstrate improving performance, segmenting long-term and complex video scenes remains challenging due to the difficulties in stably discriminating and tracking instance identities. To this end, we further introduce a new framework, MaskTrack, which excels in long-term VOS and also exhibits significant performance advantages in distinguishing instances in complex videos with densely packed similar objects. We conduct extensive experiments to demonstrate the effectiveness of the proposed method and show that without introducing image datasets for pretraining, it achieves excellent performance on both short-term (86.2% in YouTube-VOS val) and long-term (68.2% in LVOS val) VOS benchmarks. Our method also surprisingly demonstrates strong generalization ability and performs well in visual object tracking (VOT) (65.6% in VOTS2023) and referring VOS (RVOS) (65.2% in Ref YouTube VOS) challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
1秒前
2秒前
2秒前
简简简发布了新的文献求助10
2秒前
zhouxy发布了新的文献求助10
3秒前
阿柒完成签到,获得积分10
4秒前
4秒前
搜集达人应助悦耳的芝麻采纳,获得10
4秒前
6秒前
tanglu发布了新的文献求助200
8秒前
9秒前
华仔应助苏小沐采纳,获得10
9秒前
Rena发布了新的文献求助10
9秒前
9秒前
舒伯特完成签到 ,获得积分10
10秒前
10秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
大个应助科研通管家采纳,获得10
11秒前
Breeze应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
zhangqi发布了新的文献求助10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
13秒前
思源应助宓广缘采纳,获得10
15秒前
郑阔完成签到,获得积分10
15秒前
16秒前
英勇的鲂发布了新的文献求助10
16秒前
17秒前
PPP完成签到,获得积分10
18秒前
18秒前
BLUE完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952646
求助须知:如何正确求助?哪些是违规求助? 3498064
关于积分的说明 11090366
捐赠科研通 3228670
什么是DOI,文献DOI怎么找? 1785032
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349