亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MaskTrack: Auto-Labeling and Stable Tracking for Video Object Segmentation

计算机视觉 人工智能 分割 视频跟踪 对象(语法) 计算机科学 跟踪(教育) 心理学 教育学
作者
Zhenyu Chen,Pengfei Zhang,Ping Hu,Huchuan Lu,You He
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3469959
摘要

Video object segmentation (VOS) has witnessed notable progress due to the establishment of video training datasets and the introduction of diverse, innovative network architectures. However, video mask annotation is a highly intricate and labor-intensive task, as meticulous frame-by-frame comparisons are needed to ascertain the positions and identities of targets in the subsequent frames. Current VOS benchmarks often annotate only a few instances in each video to save costs, which, however, hinders the model's understanding of the complete context of the video scenes. To simplify video annotation and achieve efficient dense labeling, we introduce a zero-shot auto-labeling strategy based on the segment anything model (SAM), enabling it to densely annotate video instances without access to any manual annotations. Moreover, although existing VOS methods demonstrate improving performance, segmenting long-term and complex video scenes remains challenging due to the difficulties in stably discriminating and tracking instance identities. To this end, we further introduce a new framework, MaskTrack, which excels in long-term VOS and also exhibits significant performance advantages in distinguishing instances in complex videos with densely packed similar objects. We conduct extensive experiments to demonstrate the effectiveness of the proposed method and show that without introducing image datasets for pretraining, it achieves excellent performance on both short-term (86.2% in YouTube-VOS val) and long-term (68.2% in LVOS val) VOS benchmarks. Our method also surprisingly demonstrates strong generalization ability and performs well in visual object tracking (VOT) (65.6% in VOTS2023) and referring VOS (RVOS) (65.2% in Ref YouTube VOS) challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
12秒前
Cherry发布了新的文献求助10
15秒前
pysa给pysa的求助进行了留言
26秒前
joanna完成签到,获得积分10
36秒前
呆萌盼柳完成签到,获得积分10
36秒前
呆萌盼柳发布了新的文献求助10
55秒前
krathhong完成签到 ,获得积分10
1分钟前
充电宝应助YIN采纳,获得10
1分钟前
1分钟前
YIN发布了新的文献求助10
1分钟前
1分钟前
星流xx完成签到 ,获得积分10
1分钟前
songjing完成签到,获得积分10
2分钟前
2分钟前
正同学发布了新的文献求助30
2分钟前
正同学应助hikevin126采纳,获得50
3分钟前
3分钟前
songjing发布了新的文献求助10
3分钟前
3分钟前
5分钟前
pysa发布了新的文献求助10
6分钟前
pysa完成签到,获得积分10
6分钟前
神勇丹烟发布了新的文献求助30
7分钟前
汤汤完成签到 ,获得积分10
7分钟前
脑洞疼应助科研通管家采纳,获得10
8分钟前
Ava应助勤恳怡采纳,获得10
9分钟前
9分钟前
勤恳怡发布了新的文献求助10
9分钟前
可爱的函函应助勤恳怡采纳,获得10
9分钟前
打打应助科研通管家采纳,获得10
10分钟前
深情安青应助lingzhiyi采纳,获得10
10分钟前
在水一方应助禤禤采纳,获得10
10分钟前
Windy完成签到,获得积分10
10分钟前
10分钟前
禤禤发布了新的文献求助10
10分钟前
科研通AI2S应助ykswz99采纳,获得10
11分钟前
Candy关注了科研通微信公众号
11分钟前
禤禤完成签到,获得积分10
11分钟前
12分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207751
求助须知:如何正确求助?哪些是违规求助? 2857006
关于积分的说明 8108364
捐赠科研通 2522603
什么是DOI,文献DOI怎么找? 1355902
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613670