亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MaskTrack: Auto-Labeling and Stable Tracking for Video Object Segmentation

计算机视觉 人工智能 分割 视频跟踪 对象(语法) 计算机科学 跟踪(教育) 心理学 教育学
作者
Zhenyu Chen,Pengfei Zhang,Ping Hu,Huchuan Lu,You He
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3469959
摘要

Video object segmentation (VOS) has witnessed notable progress due to the establishment of video training datasets and the introduction of diverse, innovative network architectures. However, video mask annotation is a highly intricate and labor-intensive task, as meticulous frame-by-frame comparisons are needed to ascertain the positions and identities of targets in the subsequent frames. Current VOS benchmarks often annotate only a few instances in each video to save costs, which, however, hinders the model's understanding of the complete context of the video scenes. To simplify video annotation and achieve efficient dense labeling, we introduce a zero-shot auto-labeling strategy based on the segment anything model (SAM), enabling it to densely annotate video instances without access to any manual annotations. Moreover, although existing VOS methods demonstrate improving performance, segmenting long-term and complex video scenes remains challenging due to the difficulties in stably discriminating and tracking instance identities. To this end, we further introduce a new framework, MaskTrack, which excels in long-term VOS and also exhibits significant performance advantages in distinguishing instances in complex videos with densely packed similar objects. We conduct extensive experiments to demonstrate the effectiveness of the proposed method and show that without introducing image datasets for pretraining, it achieves excellent performance on both short-term (86.2% in YouTube-VOS val) and long-term (68.2% in LVOS val) VOS benchmarks. Our method also surprisingly demonstrates strong generalization ability and performs well in visual object tracking (VOT) (65.6% in VOTS2023) and referring VOS (RVOS) (65.2% in Ref YouTube VOS) challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香豆素完成签到 ,获得积分10
4秒前
7秒前
10秒前
典雅绮兰完成签到 ,获得积分10
12秒前
cjfc发布了新的文献求助10
15秒前
NexusExplorer应助mm采纳,获得10
17秒前
lijiawei完成签到,获得积分10
19秒前
21秒前
Ava应助cjfc采纳,获得10
26秒前
Mr完成签到 ,获得积分10
30秒前
HaonanZhang发布了新的文献求助10
30秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
嘿嘿应助科研通管家采纳,获得10
31秒前
JoeyJin完成签到,获得积分10
36秒前
ceeray23发布了新的文献求助20
36秒前
科研通AI2S应助中野霊乃采纳,获得10
39秒前
47秒前
养乐多敬你完成签到 ,获得积分10
48秒前
56秒前
无情的问枫完成签到 ,获得积分10
1分钟前
万能图书馆应助研猫采纳,获得10
1分钟前
1分钟前
1分钟前
haiboe完成签到,获得积分10
1分钟前
清爽冬莲完成签到 ,获得积分0
1分钟前
crabcrab29完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助中野霊乃采纳,获得10
1分钟前
暴走小面包完成签到 ,获得积分10
1分钟前
1分钟前
阿宇发布了新的文献求助10
1分钟前
1分钟前
crabcrab29发布了新的文献求助10
1分钟前
mm发布了新的文献求助10
1分钟前
一日落叶发布了新的文献求助10
1分钟前
张KT发布了新的文献求助10
1分钟前
认真的幻姬完成签到,获得积分10
1分钟前
1分钟前
酷炫的爆米花完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508