已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MaskTrack: Auto-Labeling and Stable Tracking for Video Object Segmentation

计算机视觉 人工智能 分割 视频跟踪 对象(语法) 计算机科学 跟踪(教育) 心理学 教育学
作者
Zhenyu Chen,Pengfei Zhang,Ping Hu,Huchuan Lu,You He
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3469959
摘要

Video object segmentation (VOS) has witnessed notable progress due to the establishment of video training datasets and the introduction of diverse, innovative network architectures. However, video mask annotation is a highly intricate and labor-intensive task, as meticulous frame-by-frame comparisons are needed to ascertain the positions and identities of targets in the subsequent frames. Current VOS benchmarks often annotate only a few instances in each video to save costs, which, however, hinders the model's understanding of the complete context of the video scenes. To simplify video annotation and achieve efficient dense labeling, we introduce a zero-shot auto-labeling strategy based on the segment anything model (SAM), enabling it to densely annotate video instances without access to any manual annotations. Moreover, although existing VOS methods demonstrate improving performance, segmenting long-term and complex video scenes remains challenging due to the difficulties in stably discriminating and tracking instance identities. To this end, we further introduce a new framework, MaskTrack, which excels in long-term VOS and also exhibits significant performance advantages in distinguishing instances in complex videos with densely packed similar objects. We conduct extensive experiments to demonstrate the effectiveness of the proposed method and show that without introducing image datasets for pretraining, it achieves excellent performance on both short-term (86.2% in YouTube-VOS val) and long-term (68.2% in LVOS val) VOS benchmarks. Our method also surprisingly demonstrates strong generalization ability and performs well in visual object tracking (VOT) (65.6% in VOTS2023) and referring VOS (RVOS) (65.2% in Ref YouTube VOS) challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugo完成签到,获得积分20
1秒前
1秒前
3秒前
英姑应助王槿采纳,获得10
3秒前
阿洁完成签到,获得积分10
3秒前
xhj666发布了新的文献求助10
4秒前
5秒前
5秒前
君寻完成签到 ,获得积分10
6秒前
kk发布了新的文献求助10
7秒前
彭于晏应助科研通管家采纳,获得30
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
8秒前
sci发布了新的文献求助10
8秒前
田様应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
木兆完成签到 ,获得积分10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助神海采纳,获得10
8秒前
8秒前
8秒前
kk发布了新的文献求助10
9秒前
9秒前
10秒前
难过的丹烟完成签到,获得积分10
10秒前
wsx发布了新的文献求助10
10秒前
liaojun发布了新的文献求助10
10秒前
亦亦完成签到 ,获得积分10
13秒前
15秒前
盒饭飞仙完成签到 ,获得积分10
16秒前
小小孟同学完成签到,获得积分20
17秒前
端庄的曼云关注了科研通微信公众号
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396