Unleash the Power of State Space Model for Whole Slide Image with Local Aware Scanning and Importance Resampling

重采样 计算机视觉 计算机科学 人工智能 图像(数学) 国家(计算机科学) 功率(物理) 迭代重建 算法 物理 量子力学
作者
Yanyan Huang,Weiqin Zhao,Yu Fu,Lingting Zhu,Lequan Yu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3475587
摘要

Whole slide image (WSI) analysis is gaining prominence within the medical imaging field. However, previous methods often fall short of efficiently processing entire WSIs due to their gigapixel size. Inspired by recent developments in state space models, this paper introduces a new Pathology Mamba (PAM) for more accurate and robust WSI analysis. PAM includes three carefully designed components to tackle the challenges of enormous image size, the utilization of local and hierarchical information, and the mismatch between the feature distributions of training and testing during WSI analysis. Specifically, we design a Bi-directional Mamba Encoder to process the extensive patches present in WSIs effectively and efficiently, which can handle large-scale pathological images while achieving high performance and accuracy. To further harness the local information and inherent hierarchical structure of WSI, we introduce a novel Local-aware Scanning module, which employs a local-aware mechanism alongside hierarchical scanning to adeptly capture both the local information and the overarching structure within WSIs. Moreover, to alleviate the patch feature distribution misalignment between training and testing, we propose a Test-time Importance Resampling module to conduct testing patch resampling to ensure consistency of feature distribution between the training and testing phases, and thus enhance model prediction. Extensive evaluation on nine WSI datasets with cancer subtyping and survival prediction tasks demonstrates that PAM outperforms current state-of-the-art methods and also its enhanced capability in modeling discriminative areas within WSIs. The source code is available at https://github.com/HKU-MedAI/PAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助论文通通采纳,获得10
1秒前
1秒前
Ljc发布了新的文献求助10
2秒前
无限书蕾发布了新的文献求助10
2秒前
二师兄完成签到,获得积分10
2秒前
隐形的长颈鹿完成签到 ,获得积分10
3秒前
疯狂的沛岚完成签到,获得积分10
4秒前
研友_VZG7GZ应助兴奋千兰采纳,获得10
5秒前
Yexidong完成签到,获得积分10
5秒前
悦耳的扬发布了新的文献求助10
5秒前
妖精很通完成签到,获得积分10
6秒前
要减肥的高山完成签到,获得积分10
8秒前
务实的易真完成签到,获得积分10
8秒前
孤岛飞鹰完成签到,获得积分10
8秒前
10秒前
zhaopangpang发布了新的文献求助10
12秒前
二师兄发布了新的文献求助10
14秒前
wq完成签到,获得积分10
14秒前
小宝完成签到 ,获得积分10
15秒前
16秒前
kongmou发布了新的文献求助10
19秒前
拉个鬼完成签到,获得积分20
19秒前
22秒前
zhaopangpang完成签到,获得积分10
23秒前
言文言完成签到,获得积分10
23秒前
张宝发布了新的文献求助10
24秒前
隐形曼青应助Ljc采纳,获得10
24秒前
勤劳的星月完成签到 ,获得积分10
25秒前
26秒前
论文通通发布了新的文献求助10
26秒前
pink完成签到,获得积分10
26秒前
26秒前
28秒前
28秒前
Owen应助yongtao采纳,获得10
29秒前
大胆蛋挞完成签到,获得积分10
29秒前
29秒前
拾捌完成签到,获得积分10
30秒前
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112