Explainable Artificial Intelligence for Early Prediction of Pressure Injury Risk

可解释性 仪表板 人工智能 医学 机器学习 接收机工作特性 重症监护 风险评估 集合预报 计算机科学 数据科学 重症监护医学 计算机安全
作者
Jenny Alderden,Jace D. Johnny,Katie Brooks,Andrew Gordon Wilson,Tracey L. Yap,Yunchuan Zhao,Mark van der Laan,Susan M. Kennerly
出处
期刊:American Journal of Critical Care [AACN Publishing]
卷期号:33 (5): 373-381
标识
DOI:10.4037/ajcc2024856
摘要

Background Hospital-acquired pressure injuries (HAPIs) have a major impact on patient outcomes in intensive care units (ICUs). Effective prevention relies on early and accurate risk assessment. Traditional risk-assessment tools, such as the Braden Scale, often fail to capture ICU-specific factors, limiting their predictive accuracy. Although artificial intelligence models offer improved accuracy, their “black box” nature poses a barrier to clinical adoption. Objective To develop an artificial intelligence–based HAPI risk-assessment model enhanced with an explainable artificial intelligence dashboard to improve interpretability at both the global and individual patient levels. Methods An explainable artificial intelligence approach was used to analyze ICU patient data from the Medical Information Mart for Intensive Care. Predictor variables were restricted to the first 48 hours after ICU admission. Various machine-learning algorithms were evaluated, culminating in an ensemble “super learner” model. The model’s performance was quantified using the area under the receiver operating characteristic curve through 5-fold cross-validation. An explainer dashboard was developed (using synthetic data for patient privacy), featuring interactive visualizations for in-depth model interpretation at the global and local levels. Results The final sample comprised 28 395 patients with a 4.9% incidence of HAPIs. The ensemble super learner model performed well (area under curve = 0.80). The explainer dashboard provided global and patient-level interactive visualizations of model predictions, showing each variable’s influence on the risk-assessment outcome. Conclusion The model and its dashboard provide clinicians with a transparent, interpretable artificial intelligence–based risk-assessment system for HAPIs that may enable more effective and timely preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助30
刚刚
哇哈哈哈完成签到,获得积分10
1秒前
JIAYUEMA发布了新的文献求助20
1秒前
victormanboy3完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
5秒前
尹冰之完成签到,获得积分10
6秒前
小草三心发布了新的文献求助10
6秒前
6秒前
7秒前
NtoLse完成签到,获得积分10
8秒前
田様应助年轻就要气盛采纳,获得10
8秒前
8秒前
zm发布了新的文献求助10
9秒前
酸菜鱼火锅完成签到,获得积分10
10秒前
没有稗子发布了新的文献求助10
11秒前
WEI完成签到,获得积分10
11秒前
ssss完成签到,获得积分10
12秒前
12秒前
13秒前
Hhhhh发布了新的文献求助10
13秒前
zjx发布了新的文献求助10
14秒前
小二郎应助小柚子采纳,获得10
15秒前
15秒前
星辰大海应助一一采纳,获得10
15秒前
优雅的数据线完成签到,获得积分10
16秒前
晚安发布了新的社区帖子
16秒前
CipherSage应助聪明的一德采纳,获得10
16秒前
fanfan完成签到 ,获得积分10
18秒前
随遇而安完成签到,获得积分10
18秒前
陈平安发布了新的文献求助10
19秒前
森气发布了新的文献求助10
19秒前
SDSD完成签到,获得积分10
20秒前
燕尔蓝发布了新的文献求助10
20秒前
坚强亦丝应助zzz采纳,获得10
21秒前
victormanboy3发布了新的文献求助10
22秒前
25秒前
27秒前
Jasper应助cc采纳,获得10
27秒前
搜集达人应助wwaakk采纳,获得10
28秒前
吴子秋发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443647
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978440
捐赠科研通 2728341
什么是DOI,文献DOI怎么找? 1496490
科研通“疑难数据库(出版商)”最低求助积分说明 691648
邀请新用户注册赠送积分活动 689213