Explainable Artificial Intelligence for Early Prediction of Pressure Injury Risk

可解释性 仪表板 人工智能 医学 机器学习 接收机工作特性 重症监护 风险评估 集合预报 计算机科学 数据科学 重症监护医学 计算机安全
作者
Jenny Alderden,Jace D. Johnny,Katie Brooks,Andrew Gordon Wilson,Tracey L. Yap,Yunchuan Zhao,Mark van der Laan,Susan M. Kennerly
出处
期刊:American Journal of Critical Care [AACN Publishing]
卷期号:33 (5): 373-381
标识
DOI:10.4037/ajcc2024856
摘要

Background Hospital-acquired pressure injuries (HAPIs) have a major impact on patient outcomes in intensive care units (ICUs). Effective prevention relies on early and accurate risk assessment. Traditional risk-assessment tools, such as the Braden Scale, often fail to capture ICU-specific factors, limiting their predictive accuracy. Although artificial intelligence models offer improved accuracy, their “black box” nature poses a barrier to clinical adoption. Objective To develop an artificial intelligence–based HAPI risk-assessment model enhanced with an explainable artificial intelligence dashboard to improve interpretability at both the global and individual patient levels. Methods An explainable artificial intelligence approach was used to analyze ICU patient data from the Medical Information Mart for Intensive Care. Predictor variables were restricted to the first 48 hours after ICU admission. Various machine-learning algorithms were evaluated, culminating in an ensemble “super learner” model. The model’s performance was quantified using the area under the receiver operating characteristic curve through 5-fold cross-validation. An explainer dashboard was developed (using synthetic data for patient privacy), featuring interactive visualizations for in-depth model interpretation at the global and local levels. Results The final sample comprised 28 395 patients with a 4.9% incidence of HAPIs. The ensemble super learner model performed well (area under curve = 0.80). The explainer dashboard provided global and patient-level interactive visualizations of model predictions, showing each variable’s influence on the risk-assessment outcome. Conclusion The model and its dashboard provide clinicians with a transparent, interpretable artificial intelligence–based risk-assessment system for HAPIs that may enable more effective and timely preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123566完成签到,获得积分10
刚刚
文小杰发布了新的文献求助10
1秒前
酷酷菲音发布了新的文献求助10
1秒前
淡淡觅波发布了新的文献求助30
1秒前
brick2024完成签到,获得积分10
1秒前
偌佟发布了新的文献求助10
2秒前
2秒前
文献啊文献完成签到,获得积分10
2秒前
wqy完成签到 ,获得积分10
2秒前
开心完成签到,获得积分10
3秒前
Gzl完成签到,获得积分10
3秒前
wwwwwwwww发布了新的文献求助10
3秒前
海棠花未眠完成签到,获得积分10
4秒前
lmy完成签到,获得积分10
5秒前
火星上的听云完成签到,获得积分10
5秒前
木偶完成签到 ,获得积分10
5秒前
细心慕凝完成签到 ,获得积分10
5秒前
任风完成签到,获得积分10
5秒前
心灵美鑫完成签到 ,获得积分10
6秒前
朴素太阳发布了新的文献求助10
6秒前
6秒前
鱼摆摆摆摆完成签到,获得积分10
6秒前
田様应助浮生采纳,获得10
7秒前
sens完成签到,获得积分10
7秒前
乐观寒珊发布了新的文献求助10
7秒前
7秒前
7秒前
Lynn完成签到 ,获得积分10
7秒前
汤翔完成签到,获得积分10
7秒前
zsg完成签到,获得积分10
7秒前
8秒前
如果我沉默完成签到,获得积分20
9秒前
乐乐完成签到,获得积分10
9秒前
鹿小张完成签到,获得积分10
9秒前
韩邹光完成签到,获得积分10
10秒前
我是萨比完成签到,获得积分10
10秒前
xiaowang发布了新的文献求助10
10秒前
11秒前
Betty关注了科研通微信公众号
11秒前
凉茶完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910