Hierarchical 3D Percolation Network of Ag–Au Core–Shell Nanowire-Hydrogel Composite for Efficient Biohybride Electrodes

材料科学 纳米线 纳米技术 电极 纳米材料 复合数 渗透(认知心理学) 电导率 生物电子学 复合材料 生物传感器 化学 物理化学 神经科学 生物
作者
Jae Weon Choi,JinKi Min,Dohyung Kim,Jin Kim,Jinsol Kim,Hye-Kyung Yoon,Dong Won Lee,Yunkyung Jeong,C‐Yoon Kim,Seung Hwan Ko
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (18): 17966-17978 被引量:7
标识
DOI:10.1021/acsnano.3c04292
摘要

Metal nanomaterials are highly valued for their enhanced surface area and electrochemical properties, which are crucial for energy devices and bioelectronics. However, their practical applications are often limited by challenges, such as scalability and dimensional constraints. In this study, we developed a synthesis method for highly porous Ag–Au core–shell nanowire foam (AACNF) using a one-pot process based on a simultaneous nanowelding synthesis method. The unique characteristics of AACNF as metal-based electrodes show the lowest density among metal-based electrodes while demonstrating high electrical conductivity (99.33–753.04 S/m) and mechanical stability. The AACNF’s excellent mass transport properties enable multiscale hierarchical incorporation with functional materials including polymeric precursors and living cells. The enhanced mechanical stability at the nanowelded junctions allows AACNF-hydrogel composites to exhibit large stretching (∼700%) and 10,000 times higher electrical conductivity than hydrogel-nanowire composites without the junction. Large particles in the 1–10 μm scale, including fibroblast cells and exoelectrogenic microbes, are also successfully incorporated with AACNF. AACNF-based microbial fuel cells show high power density (∼330.1 W/m3) within the optimal density range. AACNF’s distinctive ability to form a hierarchical structure with substances in various scales showcases its potential for advanced energy devices and biohybrid electrodes in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助逢考必过采纳,获得10
2秒前
俏皮的一德完成签到,获得积分10
3秒前
3秒前
CY发布了新的文献求助10
3秒前
4秒前
大大小小发布了新的文献求助10
5秒前
夹心饼干关注了科研通微信公众号
5秒前
6秒前
CoCoco完成签到,获得积分10
6秒前
拼搏老九发布了新的文献求助10
7秒前
汪鸡毛发布了新的文献求助10
7秒前
8秒前
8秒前
tonstark完成签到,获得积分10
8秒前
领导范儿应助俭朴白猫采纳,获得10
8秒前
假装超人会飞完成签到,获得积分10
9秒前
上官若男应助十米采纳,获得10
9秒前
脑洞疼应助七七八八采纳,获得10
10秒前
小北发布了新的文献求助10
10秒前
11完成签到,获得积分10
10秒前
10秒前
简洁应助研友_8415kL采纳,获得20
10秒前
英姑应助大米的小鱼采纳,获得30
11秒前
12秒前
猪猪爆发布了新的文献求助10
13秒前
15秒前
Ava应助汪鸡毛采纳,获得10
15秒前
16秒前
Cat应助大大小小采纳,获得10
16秒前
大模型应助大大小小采纳,获得10
16秒前
周大聪明完成签到,获得积分10
16秒前
Akim应助GM李采纳,获得10
16秒前
张可发布了新的文献求助10
16秒前
17秒前
17秒前
兔BF发布了新的文献求助80
18秒前
18秒前
活力的亦云完成签到,获得积分10
18秒前
半熟咸鱼关注了科研通微信公众号
21秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1500
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 550
Decision Theory 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2988343
求助须知:如何正确求助?哪些是违规求助? 2649526
关于积分的说明 7158953
捐赠科研通 2283573
什么是DOI,文献DOI怎么找? 1210766
版权声明 592454
科研通“疑难数据库(出版商)”最低求助积分说明 591239