Mode-Decoupling Auto-Encoder for Machinery Fault Diagnosis Under Unknown Working Conditions

自编码 解耦(概率) 人工智能 可解释性 模式识别(心理学) 计算机科学 断层(地质) 控制理论(社会学) 特征提取 工程类 控制工程 人工神经网络 控制(管理) 地震学 地质学
作者
Zenghui An,Xingxing Jiang,Jie Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4990-5003 被引量:2
标识
DOI:10.1109/tii.2023.3331129
摘要

Rotating machinery often runs under variable working conditions, which results that the working condition of testing samples is unknown for the diagnosis model. The performance of the existed diagnosis methods trained by the samples under the known working condition will be deteriorated when they are used to diagnose the machine under an unknown working condition. The core for solving this issue is to eliminate the influence of working conditions. Inspired by this idea, a mode-decoupling autoencoder (MDAE) with two autoencoders, namely, fault-related mode (FRM) autoencoder and working condition mode (WCM) autoencoder is proposed for machinery fault diagnosis under unknown working conditions. An optimization object with reconstruction loss term, elimination loss term and classification loss term, is custom-tailored for the MDAE to ensure that the FRM autoencoder extracts the FRM and eliminates the WCM as best it can. As a result, the embedding feature extracted by the FRM autoencoder can be directly input into the classifier for the machinery fault diagnosis under unknown working conditions. Experimental results validate the superiority of MDAE in machinery fault diagnosis under unknown working conditions. Moreover, a detailed discussion is performed on the effects of model setting and the interpretability of mode decoupling of MDAE, that is, the stability of MDAE is well at a certain range and the merit of MDAE is given that the WCM autoencoder can drive the trained FRM autoencoder to eliminate the WCM guided by the knowledge of the normal samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助优美的听筠采纳,获得10
刚刚
高帮白袜发布了新的文献求助10
刚刚
1秒前
共享精神应助科研工作者采纳,获得10
1秒前
1秒前
笑该动人发布了新的文献求助10
1秒前
wanci应助灵巧凝莲采纳,获得10
1秒前
阿吟发布了新的文献求助10
1秒前
当你完成签到,获得积分10
1秒前
GAOSAN完成签到,获得积分10
2秒前
yu完成签到,获得积分20
2秒前
LiDaYang完成签到,获得积分10
2秒前
3秒前
3秒前
桐桐应助傅英俊采纳,获得10
3秒前
lyy发布了新的文献求助10
3秒前
又见三皮发布了新的文献求助10
4秒前
lynn完成签到,获得积分10
4秒前
4秒前
4秒前
小鱼完成签到 ,获得积分10
5秒前
15383387185完成签到,获得积分10
5秒前
伍秋望完成签到,获得积分10
5秒前
杨洋完成签到,获得积分10
6秒前
6秒前
无语的巨人完成签到 ,获得积分10
6秒前
全或无发布了新的文献求助20
7秒前
无限的绮晴完成签到,获得积分10
7秒前
爆米花应助邱航采纳,获得10
7秒前
993494543发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
夏天完成签到,获得积分20
8秒前
机智的天天完成签到,获得积分10
8秒前
8秒前
搜集达人应助LJQ采纳,获得10
8秒前
蚂蚁工人完成签到,获得积分10
8秒前
smt完成签到,获得积分10
8秒前
Pendulium发布了新的文献求助10
8秒前
SciGPT应助谢大喵采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284