重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Mode-Decoupling Auto-Encoder for Machinery Fault Diagnosis Under Unknown Working Conditions

自编码 解耦(概率) 人工智能 可解释性 模式识别(心理学) 计算机科学 断层(地质) 控制理论(社会学) 特征提取 工程类 控制工程 人工神经网络 地质学 地震学 控制(管理)
作者
Zenghui An,Xingxing Jiang,Jie Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4990-5003 被引量:2
标识
DOI:10.1109/tii.2023.3331129
摘要

Rotating machinery often runs under variable working conditions, which results that the working condition of testing samples is unknown for the diagnosis model. The performance of the existed diagnosis methods trained by the samples under the known working condition will be deteriorated when they are used to diagnose the machine under an unknown working condition. The core for solving this issue is to eliminate the influence of working conditions. Inspired by this idea, a mode-decoupling autoencoder (MDAE) with two autoencoders, namely, fault-related mode (FRM) autoencoder and working condition mode (WCM) autoencoder is proposed for machinery fault diagnosis under unknown working conditions. An optimization object with reconstruction loss term, elimination loss term and classification loss term, is custom-tailored for the MDAE to ensure that the FRM autoencoder extracts the FRM and eliminates the WCM as best it can. As a result, the embedding feature extracted by the FRM autoencoder can be directly input into the classifier for the machinery fault diagnosis under unknown working conditions. Experimental results validate the superiority of MDAE in machinery fault diagnosis under unknown working conditions. Moreover, a detailed discussion is performed on the effects of model setting and the interpretability of mode decoupling of MDAE, that is, the stability of MDAE is well at a certain range and the merit of MDAE is given that the WCM autoencoder can drive the trained FRM autoencoder to eliminate the WCM guided by the knowledge of the normal samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助10
刚刚
wittig完成签到,获得积分10
1秒前
雪山飞龙发布了新的文献求助30
1秒前
林珍发布了新的文献求助10
2秒前
ling发布了新的文献求助10
2秒前
小马甲应助CDL采纳,获得10
2秒前
2秒前
3秒前
3秒前
酷波er应助阳光的棒球采纳,获得10
3秒前
科研通AI6应助Dawn采纳,获得10
3秒前
qtr发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
昏睡的保温杯完成签到,获得积分10
5秒前
ljq发布了新的文献求助10
5秒前
幽默尔蓝发布了新的文献求助10
5秒前
5秒前
ssssss发布了新的文献求助10
5秒前
123完成签到,获得积分10
6秒前
6秒前
neko发布了新的文献求助10
7秒前
不知道完成签到,获得积分10
8秒前
澎鱼盐完成签到,获得积分10
8秒前
科研迪发布了新的文献求助10
8秒前
旋风狗超人完成签到,获得积分10
8秒前
CodeCraft应助帅气的高跟鞋采纳,获得10
9秒前
9秒前
JTHan发布了新的文献求助10
9秒前
9秒前
9秒前
雪山飞龙发布了新的文献求助10
9秒前
隐形曼青应助盲盒采纳,获得10
10秒前
gouqi完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
king发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567