Mode-Decoupling Auto-Encoder for Machinery Fault Diagnosis Under Unknown Working Conditions

自编码 解耦(概率) 人工智能 可解释性 模式识别(心理学) 计算机科学 断层(地质) 控制理论(社会学) 特征提取 工程类 控制工程 人工神经网络 地质学 地震学 控制(管理)
作者
Zenghui An,Xingxing Jiang,Jie Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4990-5003 被引量:2
标识
DOI:10.1109/tii.2023.3331129
摘要

Rotating machinery often runs under variable working conditions, which results that the working condition of testing samples is unknown for the diagnosis model. The performance of the existed diagnosis methods trained by the samples under the known working condition will be deteriorated when they are used to diagnose the machine under an unknown working condition. The core for solving this issue is to eliminate the influence of working conditions. Inspired by this idea, a mode-decoupling autoencoder (MDAE) with two autoencoders, namely, fault-related mode (FRM) autoencoder and working condition mode (WCM) autoencoder is proposed for machinery fault diagnosis under unknown working conditions. An optimization object with reconstruction loss term, elimination loss term and classification loss term, is custom-tailored for the MDAE to ensure that the FRM autoencoder extracts the FRM and eliminates the WCM as best it can. As a result, the embedding feature extracted by the FRM autoencoder can be directly input into the classifier for the machinery fault diagnosis under unknown working conditions. Experimental results validate the superiority of MDAE in machinery fault diagnosis under unknown working conditions. Moreover, a detailed discussion is performed on the effects of model setting and the interpretability of mode decoupling of MDAE, that is, the stability of MDAE is well at a certain range and the merit of MDAE is given that the WCM autoencoder can drive the trained FRM autoencoder to eliminate the WCM guided by the knowledge of the normal samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangzhudi2333发布了新的文献求助10
1秒前
马嘉祺完成签到 ,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
4秒前
嘉欣发布了新的文献求助10
4秒前
5秒前
彩色石头发布了新的文献求助10
5秒前
5秒前
行走江湖的特美投完成签到,获得积分0
5秒前
5秒前
今后应助yangzhudi2333采纳,获得10
7秒前
铁铁发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
打打应助yangwenjie1212采纳,获得10
9秒前
哈哈哈完成签到,获得积分10
10秒前
研友_VZG7GZ应助嘉欣采纳,获得10
10秒前
咚咚发布了新的文献求助10
11秒前
花花花花发布了新的文献求助10
11秒前
科研通AI6应助qiang采纳,获得10
11秒前
慕青应助AN采纳,获得10
11秒前
NexusExplorer应助彩色石头采纳,获得10
12秒前
善学以致用应助彩色石头采纳,获得10
12秒前
YMM完成签到,获得积分10
12秒前
打打应助彩色石头采纳,获得10
12秒前
西米发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
16秒前
15987342672完成签到 ,获得积分10
16秒前
chipmunk完成签到,获得积分10
16秒前
科研小能手完成签到,获得积分10
17秒前
17秒前
无极微光应助洁净的士晋采纳,获得20
18秒前
hululu完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430775
求助须知:如何正确求助?哪些是违规求助? 4543849
关于积分的说明 14189575
捐赠科研通 4462258
什么是DOI,文献DOI怎么找? 2446493
邀请新用户注册赠送积分活动 1437927
关于科研通互助平台的介绍 1414544