A predictive and prognostic model for surgical outcome and prognosis in ovarian cancer computed by clinico-pathological and serological parameters (CA125, HE4, mesothelin)

医学 卵巢癌 间皮素 内科学 肿瘤科 病态的 血清学 阶段(地层学) 癌症 胃肠病学 免疫学 生物 古生物学 抗体
作者
Daniel Martin Klotz,Theresa Link,Pauline Wimberger,Jan Dominik Kuhlmann
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
标识
DOI:10.1515/cclm-2023-0314
摘要

Numerous prognostic models have been proposed for ovarian cancer, extending from single serological factors to complex gene-expression signatures. Nonetheless, these models have not been routinely translated into clinical practice. We constructed a robust and readily calculable model for predicting surgical outcome and prognosis of ovarian cancer patients by exploiting commonly available clinico-pathological factors and three selected serum parameters.Serum CA125, human epididymis protein 4 (HE4) and mesothelin (MSL) were quantified by Lumipulse® G chemiluminescent enzyme immunoassay (Fujirebio) in a total of 342 serum samples from 190 ovarian cancer patients, including 152 paired pre- and post-operative samples.Detection of pre-operative HE4 and CA125 was the optimal marker combination for blood-based prediction of surgical outcome (AUC=0.86). We constructed a prognostic model, computed by serum levels of pre-operative CA125, post-operative HE4, post-operative MSL and surgical outcome. Prognostic performance of our model was superior to any of these parameters alone and was independent from BRCA1/2 mutational status. We subsequently transformed our model into a prognostic risk index, stratifying patients as "lower risk" or "higher risk". In "higher risk" patients, relapse or death was predicted with an AUC of 0.89 and they had a significantly shorter progression free survival (HR: 9.74; 95 % CI: 5.95-15.93; p<0.0001) and overall survival (HR: 5.62; 95 % CI: 3.16-9.99; p<0.0001) compared to "lower risk" patients.We present a robust predictive/prognostic model for ovarian cancer, which could readily be implemented into routine diagnostics in order to identify ovarian cancer patients at high risk of recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助优美的未来采纳,获得10
刚刚
领导范儿应助Jrssion采纳,获得10
1秒前
传奇3应助Jrssion采纳,获得10
1秒前
kls完成签到,获得积分10
1秒前
会袜子发布了新的文献求助50
1秒前
2秒前
852应助ll采纳,获得30
2秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
pyc076完成签到,获得积分10
4秒前
4秒前
4秒前
zm完成签到,获得积分10
5秒前
林业光魔发布了新的文献求助10
5秒前
5秒前
武雨寒发布了新的文献求助10
6秒前
6秒前
6秒前
nifty发布了新的文献求助10
7秒前
岳岳岳发布了新的文献求助10
8秒前
张zhang发布了新的文献求助10
8秒前
song发布了新的文献求助10
8秒前
10秒前
Yanwenjun发布了新的文献求助10
11秒前
安南应助林风眠采纳,获得10
11秒前
lixiang发布了新的文献求助30
12秒前
大模型应助淡淡依霜采纳,获得10
12秒前
科研通AI2S应助康达采纳,获得10
12秒前
坦率的云朵完成签到,获得积分10
12秒前
Chiwen完成签到,获得积分10
13秒前
香蕉觅云应助dididi采纳,获得10
13秒前
13秒前
14秒前
14秒前
思源应助奖品肉麻膏耶采纳,获得10
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
温柔的老头完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933582
求助须知:如何正确求助?哪些是违规求助? 4201685
关于积分的说明 13054603
捐赠科研通 3975759
什么是DOI,文献DOI怎么找? 2178584
邀请新用户注册赠送积分活动 1194854
关于科研通互助平台的介绍 1106269