A predictive and prognostic model for surgical outcome and prognosis in ovarian cancer computed by clinico-pathological and serological parameters (CA125, HE4, mesothelin)

医学 卵巢癌 间皮素 内科学 肿瘤科 病态的 血清学 阶段(地层学) 癌症 胃肠病学 免疫学 生物 古生物学 抗体
作者
Daniel Martin Klotz,Theresa Link,Pauline Wimberger,Jan Dominik Kuhlmann
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
标识
DOI:10.1515/cclm-2023-0314
摘要

Numerous prognostic models have been proposed for ovarian cancer, extending from single serological factors to complex gene-expression signatures. Nonetheless, these models have not been routinely translated into clinical practice. We constructed a robust and readily calculable model for predicting surgical outcome and prognosis of ovarian cancer patients by exploiting commonly available clinico-pathological factors and three selected serum parameters.Serum CA125, human epididymis protein 4 (HE4) and mesothelin (MSL) were quantified by Lumipulse® G chemiluminescent enzyme immunoassay (Fujirebio) in a total of 342 serum samples from 190 ovarian cancer patients, including 152 paired pre- and post-operative samples.Detection of pre-operative HE4 and CA125 was the optimal marker combination for blood-based prediction of surgical outcome (AUC=0.86). We constructed a prognostic model, computed by serum levels of pre-operative CA125, post-operative HE4, post-operative MSL and surgical outcome. Prognostic performance of our model was superior to any of these parameters alone and was independent from BRCA1/2 mutational status. We subsequently transformed our model into a prognostic risk index, stratifying patients as "lower risk" or "higher risk". In "higher risk" patients, relapse or death was predicted with an AUC of 0.89 and they had a significantly shorter progression free survival (HR: 9.74; 95 % CI: 5.95-15.93; p<0.0001) and overall survival (HR: 5.62; 95 % CI: 3.16-9.99; p<0.0001) compared to "lower risk" patients.We present a robust predictive/prognostic model for ovarian cancer, which could readily be implemented into routine diagnostics in order to identify ovarian cancer patients at high risk of recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guohuameike完成签到,获得积分10
1秒前
脑洞疼应助NiL采纳,获得10
2秒前
jia完成签到 ,获得积分10
2秒前
感谢芯芯今天读文献了吗转发科研通微信,获得积分50
2秒前
季节完成签到,获得积分10
3秒前
小胖子完成签到,获得积分10
3秒前
胡萝卜和小灰兔完成签到 ,获得积分10
3秒前
3秒前
耶耶耶发布了新的文献求助10
3秒前
仙林AK47完成签到,获得积分10
4秒前
默默发布了新的文献求助10
4秒前
1234567发布了新的文献求助10
4秒前
St雪完成签到,获得积分10
4秒前
坦率皮卡丘完成签到,获得积分20
5秒前
在水一方应助Frozen Flame采纳,获得10
5秒前
勤恳风华完成签到,获得积分10
5秒前
5秒前
长安完成签到,获得积分20
5秒前
子车茗应助qy采纳,获得20
6秒前
6秒前
Ice完成签到,获得积分10
6秒前
dew完成签到,获得积分0
6秒前
大美女完成签到,获得积分10
6秒前
缥缈早晨完成签到,获得积分10
6秒前
showmaker完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助150
7秒前
7秒前
感谢澹台芝芝转发科研通微信,获得积分50
7秒前
852应助haiou采纳,获得10
7秒前
沈飞飞完成签到,获得积分10
7秒前
小爱完成签到,获得积分10
7秒前
感谢安豆转发科研通微信,获得积分50
8秒前
adai完成签到,获得积分10
8秒前
zz完成签到,获得积分10
9秒前
浩天完成签到,获得积分10
9秒前
lxy完成签到,获得积分10
9秒前
英俊的铭应助Paddi采纳,获得10
9秒前
壮观花卷发布了新的文献求助10
10秒前
10秒前
ww完成签到,获得积分10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235264
求助须知:如何正确求助?哪些是违规求助? 4403733
关于积分的说明 13703838
捐赠科研通 4271112
什么是DOI,文献DOI怎么找? 2343888
邀请新用户注册赠送积分活动 1341076
关于科研通互助平台的介绍 1298572