Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy

三阴性乳腺癌 细胞内 谷胱甘肽 氧化应激 化学 前药 癌细胞 纳米医学 活性氧 癌症研究 癌症 药理学 乳腺癌 生物化学 医学 内科学 纳米技术 材料科学 纳米颗粒
作者
Mie Chen,Min Zhang,Xun Lu,Yongfei Li,Cheng Lü
出处
期刊:European Journal of Pharmaceutics and Biopharmaceutics [Elsevier]
卷期号:193: 16-27 被引量:4
标识
DOI:10.1016/j.ejpb.2023.10.014
摘要

Triple-negative breast cancer (TNBC) has been regarded as the strongest malignancy in cases of breast cancer with a poor prognosis. The development of effective treatment strategies for TNBC has always been an urgent and unmet need. The intracellular redox balance is essential for maintaining TNBC cell malignancy. Disrupting intracellular redox balance by enlarging reactive oxygen species (ROS) generation and facilitating glutathione (GSH) depletion to amplify intracellular oxidative stress may be an alternative strategy to eliminate TNBC cells. However, inducing ROS generation and GSH depletion concurrently may be challenging. Herein, a diselenium linked-dimeric prodrug nanomedicine FA-SeSe-NPs was developed to break the intracellular redox homeostasis for TNBC targeted therapy. The dimeric prodrug was synthesized by conjugating two cucurbitacin B (CuB) molecules via one diselenium bond, which was subsequently assembled with FA-PEG-DSPE to form the final nanomedicine FA-SeSe-NPs. Using the active targeting potential of folic acid (FA), FA-SeSe-NPs could accumulate in tumor tissue with elevated levels and then be specifically internalized by cancer cells. In the high ROS and GSH conditions of TNBC cells, the diselenium bond can specifically respond to ROS to produce selenium free radicals to increase ROS and react with GSH to generate S-Se bond to deplete GSH. The released CuB further induced ROS production in TNBC cells. The diselenium bond and CuB functioned synergistically to amplify oxidative stress to kill the TNBC cells. Here, we provide a promising strategy to disrupt the intracellular redox balance of cancer cells for effective TNBC therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大袁发布了新的文献求助10
刚刚
ZDY发布了新的文献求助10
1秒前
郭一鸣完成签到,获得积分10
1秒前
Refrain发布了新的文献求助20
1秒前
阿达完成签到 ,获得积分10
1秒前
2秒前
朵颜三卫发布了新的文献求助10
2秒前
bkagyin应助dw5601采纳,获得10
2秒前
3秒前
3秒前
汉堡包应助佩佩采纳,获得10
4秒前
萧水白应助sometimesawake采纳,获得10
4秒前
wxyllxx发布了新的文献求助10
5秒前
太阳发布了新的文献求助10
5秒前
马超完成签到 ,获得积分10
5秒前
5秒前
韬奋!完成签到,获得积分0
6秒前
辛泡发布了新的文献求助10
6秒前
许我人间一两风关注了科研通微信公众号
6秒前
6秒前
Ren发布了新的文献求助10
6秒前
7秒前
感动期待发布了新的文献求助10
7秒前
8秒前
毛豆爸爸完成签到,获得积分0
8秒前
传奇3应助想人陪的短靴采纳,获得10
9秒前
SciGPT应助龙行天下采纳,获得10
9秒前
yaya发布了新的文献求助10
9秒前
fengfeng发布了新的文献求助10
10秒前
竹马道完成签到,获得积分10
10秒前
小新小新发布了新的文献求助10
11秒前
谦让高山发布了新的文献求助10
11秒前
12秒前
yang完成签到,获得积分10
12秒前
14秒前
丘比特应助Crazy_Runner采纳,获得10
15秒前
上官若男应助lyj采纳,获得10
15秒前
从容藏花完成签到,获得积分10
16秒前
16秒前
青旋完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648