Differentially Private Federated Learning With an Adaptive Noise Mechanism

差别隐私 MNIST数据库 计算机科学 联合学习 灵敏度(控制系统) 信息敏感性 噪音(视频) 方案(数学) 私人信息检索 信息隐私 人工智能 机器学习 分布式学习 比例(比率) 数据挖掘 分布式计算 深度学习 计算机安全 心理学 数学分析 教育学 物理 数学 量子力学 电子工程 工程类 图像(数学)
作者
Rui Xue,Kaiping Xue,Bin Zhu,Xinyi Luo,Tianwei Zhang,Qibin Sun,Jun Lü
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 74-87 被引量:6
标识
DOI:10.1109/tifs.2023.3318944
摘要

Federated Learning (FL) enables multiple distributed clients to collaboratively train a model with owned datasets. To avoid the potential privacy threat in FL, researchers propose the DP-FL strategy, which utilizes differential privacy (DP) to add elaborate noise to the exchanged parameters to hide privacy information. DP-FL guarantees the privacy of FL at the cost of model performance degradation. To balance the trade-off between model accuracy and security, we propose a differentially private federated learning scheme with an adaptive noise mechanism. This is challenging, as the distributed nature of FL makes it difficult to appropriately estimate sensitivity, where sensitivity is a concept in DP that determines the scale of noise. To resolve this, we design a generic method for sensitivity estimates based on local and global historical information. We also provide instances on four commonly used optimizers to verify its effectiveness. The experiments on MNIST, FMNIST and CIFAR-10 convincingly prove that our proposed scheme achieves higher accuracy while keeping high-level privacy protection compared to prior works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
从容晓凡发布了新的文献求助10
4秒前
鱼圆杂铺发布了新的文献求助10
6秒前
7秒前
翟如风发布了新的文献求助10
7秒前
8秒前
心平气和完成签到,获得积分10
8秒前
大力荷花完成签到,获得积分10
10秒前
10秒前
小白白完成签到 ,获得积分10
10秒前
13秒前
小崔完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
NexusExplorer应助缥缈的铅笔采纳,获得10
17秒前
17秒前
17秒前
从容晓凡完成签到,获得积分20
18秒前
越野发布了新的文献求助10
19秒前
Lucas应助快乐保温杯采纳,获得10
20秒前
echo发布了新的文献求助10
21秒前
鱼圆杂铺完成签到,获得积分0
21秒前
23秒前
26秒前
大耳朵图图完成签到,获得积分10
26秒前
Lucas应助神揽星辰入梦采纳,获得10
27秒前
28秒前
虾虾完成签到,获得积分10
28秒前
chloe完成签到,获得积分20
28秒前
酷炫的凤妖完成签到,获得积分10
28秒前
华仔应助狂奔的蜗牛采纳,获得10
28秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309