马格农
物理
激发态
非平衡态热力学
凝聚态物理
自旋波
拓扑绝缘体
激发
拓扑(电路)
磁化
量子力学
磁场
铁磁性
数学
组合数学
作者
Pieter M. Gunnink,J. Harms,R. A. Duine,Alexander Mook
标识
DOI:10.1103/physrevlett.131.126601
摘要
Topological bosonic excitations must, in contrast to their fermionic counterparts, appear at finite energies. This is a key challenge for magnons, as it prevents straightforward excitation and detection of topologically protected magnonic edge states and their use in magnonic devices. In this Letter, we show that in a nonequilibrium state, in which the magnetization is pointing against the external magnetic field, the topologically protected chiral edge states in a magnon Chern insulator can be lowered to zero frequency, making them directly accessible by existing experimental techniques. We discuss the spin-orbit torque required to stabilize this nonequilibrium state, and show explicitly using numerical Landau-Lifshitz-Gilbert simulations that the edge states can be excited with a microwave field. Finally, we consider a propagating spin wave spectroscopy experiment, and demonstrate that the edge states can be directly detected.
科研通智能强力驱动
Strongly Powered by AbleSci AI