Prognostic biomarkers and immune cell infiltration characteristics in small cell lung cancer

小桶 生物 免疫系统 癌症研究 免疫疗法 微阵列 基因 基因表达 计算生物学 免疫学 转录组 遗传学
作者
Jun Ni,Xiaoyan Si,Hanping Wang,Xiaolin Zhang,Jun Ni
标识
DOI:10.1016/j.cpt.2022.09.004
摘要

Small cell lung cancer (SCLC) is a highly malignant and aggressive neuroendocrine tumor. With the rise of immunotherapy, it has provided a new direction for SCLC. However, due to the lack of prognostic biomarkers, the median overall survival of SCLC is still to be improved. This study aimed to explore novel biomarkers and tumor-infiltrating immune cell characteristics that may serve as potential diagnostic and prognostic markers in SCLC. Gene expression profiles from patients with SCLC were downloaded from the Gene Expression Omnibus (GEO) database, and tumor microenvironment (TME) infiltration profile data were obtained using CIBERSORT. The robust rank aggregation (RRA) method was utilized to integrate three SCLC microarray datasets downloaded from the GEO database and identify robust differentially expressed genes (DEGs) between normal and tumor tissue samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the functions of the robust DEGs. Subsequently, protein–protein interaction networks and key modules were constructed by Cytoscape, and hub genes were selected from the whole network using the plugin cytoHubba. Survival analysis of hub genes was performed by Kaplan–Meier plotter in 18 patients with extensive-stage SCLC. A total of 312 robust DEGs, including 55 upregulated and 257 downregulated genes, were screened from 129 SCLC tissue samples and 44 normal tissue samples. GO and KEGG enrichment analyses revealed that the robust DEGs were predominantly involved in human T-cell leukemia virus 1 infection, focal adhesion, complement and coagulation cascades, tumor necrosis factor (TNF) signaling pathway, and ECM-receptor interaction, which are closely associated with the development and progression of SCLC. Subsequently, three DEGs modules and six hub genes (ITGA10, DUSP12, PTGS2, FOS, TGFBR2, and ICAM1) were identified through screening with the Cytoscape plugins MCODE and cytoHubba, respectively. Immune cell infiltration analysis by the CIBERSORT algorithm revealed that resting memory CD4+ T cells were the predominant infiltrating immune cells in SCLC. In addition, Kaplan–Meier plotter revealed that the gene prostaglandin-endoperoxide synthase 2 (PTGS2) was a potential prognostic biomarker of SCLC. Hub genes and tumor-infiltrating immune cells may be the molecular mechanisms underlying the development of SCLC, and this finding could contribute to the formulation of individualized immunotherapy strategies for SCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青衣北风发布了新的文献求助10
2秒前
领导范儿应助cm采纳,获得10
2秒前
桐桐应助snutcc采纳,获得10
2秒前
3秒前
内向靖巧完成签到,获得积分10
5秒前
wp4455777完成签到,获得积分10
5秒前
sylnd126发布了新的文献求助10
7秒前
嘿小黑发布了新的文献求助10
7秒前
Owen应助潇洒的小蕾采纳,获得10
7秒前
yx_cheng应助大呆采纳,获得10
7秒前
66发布了新的文献求助20
8秒前
研友_ngkyGn应助飞云采纳,获得10
9秒前
10秒前
灵寒发布了新的文献求助10
10秒前
11秒前
壮观的擎发布了新的文献求助10
12秒前
党弛完成签到,获得积分10
12秒前
12秒前
hanhan发布了新的文献求助10
13秒前
13秒前
派大凯不是俺完成签到,获得积分10
13秒前
jun完成签到 ,获得积分10
15秒前
cm发布了新的文献求助10
18秒前
xzy998应助sylnd126采纳,获得10
19秒前
倪好完成签到,获得积分10
20秒前
dusai发布了新的文献求助10
22秒前
23秒前
24秒前
Ww发布了新的文献求助10
26秒前
单薄的雁枫完成签到,获得积分10
26秒前
天天完成签到 ,获得积分10
27秒前
科研废柴完成签到,获得积分10
27秒前
U2完成签到,获得积分10
27秒前
28秒前
生而追梦不止完成签到 ,获得积分10
29秒前
善学以致用应助丰富绿蝶采纳,获得10
30秒前
30秒前
我是老大应助阿北采纳,获得10
31秒前
yk发布了新的文献求助10
33秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966082
求助须知:如何正确求助?哪些是违规求助? 3511457
关于积分的说明 11158333
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324