Estimating the stiffness of kiwifruit based on the fusion of instantaneous tactile sensor data and machine learning schemes

成熟度 人工智能 刚度 支持向量机 传感器融合 触觉传感器 软传感器 人工神经网络 非线性系统 工程类 过程(计算) 计算机科学 机器学习 机器人 结构工程 成熟 化学 物理 食品科学 量子力学 操作系统
作者
Frank Efe Erukainure,Victor Parque,Mohsen A. Hassan,Ahmed M. R. FathEl-Bab
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:201: 107289-107289 被引量:11
标识
DOI:10.1016/j.compag.2022.107289
摘要

Measuring the ripeness of fruits is one of the critical factors in achieving real-time quality control and sorting of fruit by growers and postharvest managers. However, recent tactile sensing approaches for fruit ripeness detection have suffered setbacks due to: (1) the nonlinear relationship between the sensor output and the true stiffness of fruits; and (2) the angle of contact, referred to as the inclination angle, between the sensor and the outer surface of the fruit. In this paper, we propose a non-destructive tactile sensing approach for estimating the stiffness of fruits, using kiwifruit as a case study. Our sensor configuration is based on a three-probe piezoresistive cantilever beam, allowing us to obtain relatively stable sensor outputs that are independent of the inclination angle of the fruit surface. Our stiffness estimation approach is based on the combination of instantaneous sensor outputs with 63 regression-based machine learning models comprising of neural networks, Gaussian process, support vector machines, and decision trees. For experiments, we used several kiwifruit samples at diverse ripeness levels. The extracted sensor data was used to train the learning models over a 10-fold cross-validation technique, allowing us to find the nonlinear relationships between the instantaneous sensor outputs and the ground truth stiffness of the fruit. Our pairwise statistical comparison by the Wilcoxon test at 5% significance revealed the competitive performance frontiers of our approach for stiffness prediction; the Gaussian process kernel functions and the binary trees outperformed other models at a mean squared error (MSE) of 1.0 and 2×10−23, respectively. Most neural network models achieved competitive learning performance at MSE less than 10−5 and the utmost performance being a pyramidal class of feed-forward neural architectures. The results portray the potential of achieving accurate ripeness estimation of fruit using intelligent tactile sensors with fast machine learning schemes across the supply chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南桑完成签到,获得积分10
2秒前
4秒前
大清发布了新的文献求助10
4秒前
4秒前
星辰大海应助谦让傲菡采纳,获得10
5秒前
yao完成签到,获得积分10
5秒前
9秒前
大力元霜完成签到,获得积分10
10秒前
纯真大门发布了新的文献求助10
10秒前
FashionBoy应助wzc采纳,获得10
10秒前
清秀灵薇完成签到,获得积分10
11秒前
小蘑菇应助1231采纳,获得10
12秒前
12秒前
easonchen12312完成签到,获得积分10
12秒前
狂看文献发布了新的文献求助10
13秒前
13秒前
乐乐应助刘叶采纳,获得10
16秒前
艺术家脾气完成签到,获得积分10
16秒前
yingying完成签到 ,获得积分10
16秒前
谦让傲菡发布了新的文献求助10
17秒前
adfadf发布了新的文献求助10
18秒前
纯真大门完成签到,获得积分20
18秒前
打工人不酷完成签到 ,获得积分10
22秒前
充电宝应助宋鹏浩采纳,获得10
23秒前
laihama完成签到,获得积分10
23秒前
25秒前
26秒前
adfadf完成签到,获得积分10
28秒前
31秒前
xiajj发布了新的文献求助10
31秒前
吃吃发布了新的文献求助30
32秒前
langwang完成签到,获得积分10
32秒前
鲸落发布了新的文献求助10
37秒前
徐钗欣完成签到,获得积分10
39秒前
吃吃完成签到,获得积分20
40秒前
上官若男应助苯基乙胺采纳,获得10
44秒前
嵇紫山完成签到,获得积分10
45秒前
45秒前
xiajj关注了科研通微信公众号
45秒前
48秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740384
求助须知:如何正确求助?哪些是违规求助? 3283238
关于积分的说明 10034517
捐赠科研通 3000118
什么是DOI,文献DOI怎么找? 1646328
邀请新用户注册赠送积分活动 783510
科研通“疑难数据库(出版商)”最低求助积分说明 750394