Exploring Self-Distillation Based Relational Reasoning Training for Document-Level Relation Extraction

计算机科学 关系(数据库) 人工智能 关系数据库 特征(语言学) 关系模型 过程(计算) 关系抽取 统计关系学习 自然语言处理 数据挖掘 机器学习 语言学 操作系统 哲学
作者
Liang Zhang,Jinsong Su,Zijun Min,Zhongjian Miao,Qingguo Hu,Biao Fu,Xiaodong Shi,Yidong Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (11): 13967-13975 被引量:5
标识
DOI:10.1609/aaai.v37i11.26635
摘要

Document-level relation extraction (RE) aims to extract relational triples from a document. One of its primary challenges is to predict implicit relations between entities, which are not explicitly expressed in the document but can usually be extracted through relational reasoning. Previous methods mainly implicitly model relational reasoning through the interaction among entities or entity pairs. However, they suffer from two deficiencies: 1) they often consider only one reasoning pattern, of which coverage on relational triples is limited; 2) they do not explicitly model the process of relational reasoning. In this paper, to deal with the first problem, we propose a document-level RE model with a reasoning module that contains a core unit, the reasoning multi-head self-attention unit. This unit is a variant of the conventional multi-head self-attention and utilizes four attention heads to model four common reasoning patterns, respectively, which can cover more relational triples than previous methods. Then, to address the second issue, we propose a self-distillation training framework, which contains two branches sharing parameters. In the first branch, we first randomly mask some entity pair feature vectors in the document, and then train our reasoning module to infer their relations by exploiting the feature information of other related entity pairs. By doing so, we can explicitly model the process of relational reasoning. However, because the additional masking operation is not used during testing, it causes an input gap between training and testing scenarios, which would hurt the model performance. To reduce this gap, we perform conventional supervised training without masking operation in the second branch and utilize Kullback-Leibler divergence loss to minimize the difference between the predictions of the two branches. Finally, we conduct comprehensive experiments on three benchmark datasets, of which experimental results demonstrate that our model consistently outperforms all competitive baselines. Our source code is available at https://github.com/DeepLearnXMU/DocRE-SD

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来自3602完成签到,获得积分10
1秒前
哇咔咔发布了新的文献求助10
1秒前
dayuernihao发布了新的文献求助10
1秒前
001发布了新的文献求助10
1秒前
Johnny完成签到,获得积分10
1秒前
3秒前
Johnny发布了新的文献求助10
4秒前
5秒前
WHH完成签到,获得积分20
5秒前
忧伤的大壮完成签到,获得积分10
6秒前
思源应助qwwer采纳,获得10
6秒前
踏实绮露完成签到 ,获得积分10
6秒前
minkuuuuuuu应助lvzhechen采纳,获得10
7秒前
7秒前
生鱼安乐完成签到,获得积分10
7秒前
7秒前
Courageous发布了新的文献求助10
8秒前
在水一方应助dawn采纳,获得10
9秒前
顾矜应助jiangsu20采纳,获得10
9秒前
充电宝应助陈冲采纳,获得10
10秒前
Yan发布了新的文献求助10
10秒前
Dong完成签到,获得积分10
10秒前
优秀荔枝完成签到,获得积分10
11秒前
Hua完成签到 ,获得积分10
13秒前
bkagyin应助WHH采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
李爱国应助xpeng采纳,获得10
15秒前
15秒前
Akim应助专一的摩托车采纳,获得10
15秒前
脑洞疼应助李四采纳,获得10
16秒前
16秒前
jstss完成签到,获得积分20
16秒前
研友_VZG7GZ应助陌上之心采纳,获得10
18秒前
18秒前
yuwan完成签到,获得积分10
19秒前
内向翰完成签到,获得积分10
19秒前
嗯哼发布了新的文献求助10
20秒前
666发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913