Exploring Self-Distillation Based Relational Reasoning Training for Document-Level Relation Extraction

计算机科学 关系(数据库) 人工智能 关系数据库 特征(语言学) 关系模型 过程(计算) 关系抽取 统计关系学习 自然语言处理 数据挖掘 机器学习 语言学 操作系统 哲学
作者
Liang Zhang,Jinsong Su,Zijun Min,Zhongjian Miao,Qingguo Hu,Biao Fu,Xiaodong Shi,Yidong Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (11): 13967-13975 被引量:5
标识
DOI:10.1609/aaai.v37i11.26635
摘要

Document-level relation extraction (RE) aims to extract relational triples from a document. One of its primary challenges is to predict implicit relations between entities, which are not explicitly expressed in the document but can usually be extracted through relational reasoning. Previous methods mainly implicitly model relational reasoning through the interaction among entities or entity pairs. However, they suffer from two deficiencies: 1) they often consider only one reasoning pattern, of which coverage on relational triples is limited; 2) they do not explicitly model the process of relational reasoning. In this paper, to deal with the first problem, we propose a document-level RE model with a reasoning module that contains a core unit, the reasoning multi-head self-attention unit. This unit is a variant of the conventional multi-head self-attention and utilizes four attention heads to model four common reasoning patterns, respectively, which can cover more relational triples than previous methods. Then, to address the second issue, we propose a self-distillation training framework, which contains two branches sharing parameters. In the first branch, we first randomly mask some entity pair feature vectors in the document, and then train our reasoning module to infer their relations by exploiting the feature information of other related entity pairs. By doing so, we can explicitly model the process of relational reasoning. However, because the additional masking operation is not used during testing, it causes an input gap between training and testing scenarios, which would hurt the model performance. To reduce this gap, we perform conventional supervised training without masking operation in the second branch and utilize Kullback-Leibler divergence loss to minimize the difference between the predictions of the two branches. Finally, we conduct comprehensive experiments on three benchmark datasets, of which experimental results demonstrate that our model consistently outperforms all competitive baselines. Our source code is available at https://github.com/DeepLearnXMU/DocRE-SD
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助10
1秒前
1秒前
orixero应助在远方采纳,获得10
2秒前
车青亦完成签到,获得积分10
2秒前
汀上白沙发布了新的文献求助20
3秒前
lhl2225发布了新的文献求助10
3秒前
3秒前
我的学习发布了新的文献求助10
4秒前
lyfrey完成签到 ,获得积分10
4秒前
6秒前
英姑应助淡淡的忆彤采纳,获得10
6秒前
Yultuz友发布了新的文献求助10
6秒前
王灿灿发布了新的文献求助10
6秒前
zz发布了新的文献求助30
6秒前
7秒前
9秒前
pengjunjiang完成签到,获得积分10
9秒前
9秒前
AABBZZ完成签到,获得积分10
9秒前
福明明完成签到,获得积分10
10秒前
lhl2225完成签到,获得积分10
10秒前
11秒前
Owen应助敬老院N号采纳,获得10
12秒前
FashionBoy应助敬老院N号采纳,获得10
12秒前
大模型应助敬老院N号采纳,获得10
12秒前
Lucas应助敬老院N号采纳,获得10
12秒前
CodeCraft应助敬老院N号采纳,获得10
12秒前
12秒前
虚幻的香彤完成签到,获得积分10
13秒前
13秒前
李爱国应助ZYLZYL采纳,获得10
13秒前
情怀应助鲤鱼初柳采纳,获得30
14秒前
14秒前
陌名完成签到,获得积分10
14秒前
Yultuz友完成签到,获得积分10
15秒前
搞怪幼菱发布了新的文献求助10
15秒前
15秒前
NexusExplorer应助VIP采纳,获得10
16秒前
HW完成签到,获得积分10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152350
求助须知:如何正确求助?哪些是违规求助? 2803575
关于积分的说明 7854759
捐赠科研通 2461234
什么是DOI,文献DOI怎么找? 1310176
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765