Exploring Self-Distillation Based Relational Reasoning Training for Document-Level Relation Extraction

计算机科学 关系(数据库) 人工智能 关系数据库 特征(语言学) 关系模型 过程(计算) 关系抽取 统计关系学习 自然语言处理 数据挖掘 机器学习 语言学 操作系统 哲学
作者
Liang Zhang,Jinsong Su,Zijun Min,Zhongjian Miao,Qingguo Hu,Biao Fu,Xiaodong Shi,Yidong Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (11): 13967-13975 被引量:5
标识
DOI:10.1609/aaai.v37i11.26635
摘要

Document-level relation extraction (RE) aims to extract relational triples from a document. One of its primary challenges is to predict implicit relations between entities, which are not explicitly expressed in the document but can usually be extracted through relational reasoning. Previous methods mainly implicitly model relational reasoning through the interaction among entities or entity pairs. However, they suffer from two deficiencies: 1) they often consider only one reasoning pattern, of which coverage on relational triples is limited; 2) they do not explicitly model the process of relational reasoning. In this paper, to deal with the first problem, we propose a document-level RE model with a reasoning module that contains a core unit, the reasoning multi-head self-attention unit. This unit is a variant of the conventional multi-head self-attention and utilizes four attention heads to model four common reasoning patterns, respectively, which can cover more relational triples than previous methods. Then, to address the second issue, we propose a self-distillation training framework, which contains two branches sharing parameters. In the first branch, we first randomly mask some entity pair feature vectors in the document, and then train our reasoning module to infer their relations by exploiting the feature information of other related entity pairs. By doing so, we can explicitly model the process of relational reasoning. However, because the additional masking operation is not used during testing, it causes an input gap between training and testing scenarios, which would hurt the model performance. To reduce this gap, we perform conventional supervised training without masking operation in the second branch and utilize Kullback-Leibler divergence loss to minimize the difference between the predictions of the two branches. Finally, we conduct comprehensive experiments on three benchmark datasets, of which experimental results demonstrate that our model consistently outperforms all competitive baselines. Our source code is available at https://github.com/DeepLearnXMU/DocRE-SD

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好完成签到,获得积分10
1秒前
商毛毛完成签到,获得积分10
2秒前
不倦应助刘可采纳,获得10
4秒前
wwwzy1996完成签到,获得积分10
4秒前
米浆完成签到 ,获得积分10
4秒前
JunHan发布了新的文献求助10
5秒前
宵宵完成签到 ,获得积分10
5秒前
由哎完成签到,获得积分10
6秒前
古丁完成签到,获得积分10
6秒前
传奇3应助喏晨采纳,获得30
7秒前
李健应助牧万万采纳,获得10
8秒前
111完成签到 ,获得积分10
9秒前
11秒前
CodeCraft应助zhangz采纳,获得30
14秒前
我是老大应助君故采纳,获得10
14秒前
15秒前
龙龙冲发布了新的文献求助50
15秒前
16秒前
adkdad完成签到,获得积分10
16秒前
XRQ完成签到 ,获得积分10
17秒前
小蘑菇应助maoxinnan采纳,获得10
17秒前
19秒前
小样完成签到,获得积分10
19秒前
jiajia完成签到,获得积分10
19秒前
momoni完成签到 ,获得积分10
20秒前
辛勤寻凝应助对称破缺采纳,获得10
20秒前
21秒前
Vine完成签到,获得积分10
21秒前
21秒前
111完成签到,获得积分10
22秒前
melody发布了新的文献求助10
23秒前
微笑的严青完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
喏晨发布了新的文献求助30
25秒前
迷人星星发布了新的文献求助10
26秒前
111发布了新的文献求助10
26秒前
27秒前
27秒前
不安红豆完成签到,获得积分10
27秒前
jiayelong发布了新的文献求助10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071