Exploring Self-Distillation Based Relational Reasoning Training for Document-Level Relation Extraction

计算机科学 关系(数据库) 人工智能 关系数据库 特征(语言学) 关系模型 过程(计算) 关系抽取 统计关系学习 自然语言处理 数据挖掘 机器学习 语言学 哲学 操作系统
作者
Liang Zhang,Jinsong Su,Zijun Min,Zhongjian Miao,Qingguo Hu,Biao Fu,Xiaodong Shi,Yidong Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (11): 13967-13975 被引量:5
标识
DOI:10.1609/aaai.v37i11.26635
摘要

Document-level relation extraction (RE) aims to extract relational triples from a document. One of its primary challenges is to predict implicit relations between entities, which are not explicitly expressed in the document but can usually be extracted through relational reasoning. Previous methods mainly implicitly model relational reasoning through the interaction among entities or entity pairs. However, they suffer from two deficiencies: 1) they often consider only one reasoning pattern, of which coverage on relational triples is limited; 2) they do not explicitly model the process of relational reasoning. In this paper, to deal with the first problem, we propose a document-level RE model with a reasoning module that contains a core unit, the reasoning multi-head self-attention unit. This unit is a variant of the conventional multi-head self-attention and utilizes four attention heads to model four common reasoning patterns, respectively, which can cover more relational triples than previous methods. Then, to address the second issue, we propose a self-distillation training framework, which contains two branches sharing parameters. In the first branch, we first randomly mask some entity pair feature vectors in the document, and then train our reasoning module to infer their relations by exploiting the feature information of other related entity pairs. By doing so, we can explicitly model the process of relational reasoning. However, because the additional masking operation is not used during testing, it causes an input gap between training and testing scenarios, which would hurt the model performance. To reduce this gap, we perform conventional supervised training without masking operation in the second branch and utilize Kullback-Leibler divergence loss to minimize the difference between the predictions of the two branches. Finally, we conduct comprehensive experiments on three benchmark datasets, of which experimental results demonstrate that our model consistently outperforms all competitive baselines. Our source code is available at https://github.com/DeepLearnXMU/DocRE-SD
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liyaya完成签到 ,获得积分10
刚刚
道阻且长完成签到 ,获得积分10
1秒前
fyjlfy完成签到 ,获得积分10
1秒前
苗条桐完成签到,获得积分20
1秒前
苍术关注了科研通微信公众号
2秒前
若冰完成签到,获得积分10
2秒前
2秒前
踟蹰发布了新的文献求助10
3秒前
浮游应助典雅又夏采纳,获得10
3秒前
3秒前
ephore应助奋斗诗云采纳,获得50
4秒前
4秒前
xiao发布了新的文献求助10
6秒前
6秒前
leeteukxx完成签到,获得积分10
7秒前
8秒前
火星上香菇完成签到,获得积分20
8秒前
杜飞发布了新的文献求助30
8秒前
9秒前
wang驳回了Dean应助
10秒前
苹果花完成签到,获得积分10
10秒前
11秒前
11秒前
Qianfan发布了新的文献求助10
12秒前
zzzqqq完成签到,获得积分10
12秒前
秋水发布了新的文献求助10
13秒前
露西亚发布了新的文献求助20
13秒前
13秒前
il完成签到 ,获得积分10
14秒前
14秒前
15秒前
小马甲应助苍术采纳,获得10
15秒前
15秒前
16秒前
善学以致用应助linmo采纳,获得10
17秒前
细腻冬日完成签到,获得积分10
17秒前
刻苦水风发布了新的文献求助10
18秒前
芒草lx完成签到,获得积分10
20秒前
杜飞完成签到,获得积分10
21秒前
SciGPT应助HELPMEPLZ采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125