Exploring Self-Distillation Based Relational Reasoning Training for Document-Level Relation Extraction

计算机科学 关系(数据库) 人工智能 关系数据库 特征(语言学) 关系模型 过程(计算) 关系抽取 统计关系学习 自然语言处理 数据挖掘 机器学习 语言学 操作系统 哲学
作者
Liang Zhang,Jinsong Su,Zijun Min,Zhongjian Miao,Qingguo Hu,Biao Fu,Xiaodong Shi,Yidong Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (11): 13967-13975 被引量:5
标识
DOI:10.1609/aaai.v37i11.26635
摘要

Document-level relation extraction (RE) aims to extract relational triples from a document. One of its primary challenges is to predict implicit relations between entities, which are not explicitly expressed in the document but can usually be extracted through relational reasoning. Previous methods mainly implicitly model relational reasoning through the interaction among entities or entity pairs. However, they suffer from two deficiencies: 1) they often consider only one reasoning pattern, of which coverage on relational triples is limited; 2) they do not explicitly model the process of relational reasoning. In this paper, to deal with the first problem, we propose a document-level RE model with a reasoning module that contains a core unit, the reasoning multi-head self-attention unit. This unit is a variant of the conventional multi-head self-attention and utilizes four attention heads to model four common reasoning patterns, respectively, which can cover more relational triples than previous methods. Then, to address the second issue, we propose a self-distillation training framework, which contains two branches sharing parameters. In the first branch, we first randomly mask some entity pair feature vectors in the document, and then train our reasoning module to infer their relations by exploiting the feature information of other related entity pairs. By doing so, we can explicitly model the process of relational reasoning. However, because the additional masking operation is not used during testing, it causes an input gap between training and testing scenarios, which would hurt the model performance. To reduce this gap, we perform conventional supervised training without masking operation in the second branch and utilize Kullback-Leibler divergence loss to minimize the difference between the predictions of the two branches. Finally, we conduct comprehensive experiments on three benchmark datasets, of which experimental results demonstrate that our model consistently outperforms all competitive baselines. Our source code is available at https://github.com/DeepLearnXMU/DocRE-SD

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
刚刚
WJ发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
YiHe完成签到 ,获得积分10
1秒前
Criminology34举报202430621130求助涉嫌违规
1秒前
1秒前
小郭发布了新的文献求助10
2秒前
无极微光应助YoungLee采纳,获得20
2秒前
无风完成签到,获得积分10
2秒前
好名字发布了新的文献求助10
3秒前
3秒前
000发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
绵绵球发布了新的文献求助10
5秒前
5秒前
5秒前
大胆芯发布了新的文献求助10
5秒前
5秒前
所所应助丁蕾采纳,获得10
6秒前
6秒前
bin发布了新的文献求助10
6秒前
Aurora完成签到,获得积分10
7秒前
8秒前
汉堡包应助ye采纳,获得10
8秒前
132发布了新的文献求助10
8秒前
牛肉mianbo发布了新的文献求助10
8秒前
xxf发布了新的文献求助10
8秒前
隐形曼青应助xiaomage采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
小丸子的樱桃红完成签到,获得积分10
11秒前
邱文县发布了新的文献求助10
11秒前
Mao关闭了Mao文献求助
11秒前
小郭完成签到,获得积分10
11秒前
jzt12138发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667