Exploring Self-Distillation Based Relational Reasoning Training for Document-Level Relation Extraction

计算机科学 关系(数据库) 人工智能 关系数据库 特征(语言学) 关系模型 过程(计算) 关系抽取 统计关系学习 自然语言处理 数据挖掘 机器学习 语言学 操作系统 哲学
作者
Liang Zhang,Jinsong Su,Zijun Min,Zhongjian Miao,Qingguo Hu,Biao Fu,Xiaodong Shi,Yidong Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (11): 13967-13975 被引量:5
标识
DOI:10.1609/aaai.v37i11.26635
摘要

Document-level relation extraction (RE) aims to extract relational triples from a document. One of its primary challenges is to predict implicit relations between entities, which are not explicitly expressed in the document but can usually be extracted through relational reasoning. Previous methods mainly implicitly model relational reasoning through the interaction among entities or entity pairs. However, they suffer from two deficiencies: 1) they often consider only one reasoning pattern, of which coverage on relational triples is limited; 2) they do not explicitly model the process of relational reasoning. In this paper, to deal with the first problem, we propose a document-level RE model with a reasoning module that contains a core unit, the reasoning multi-head self-attention unit. This unit is a variant of the conventional multi-head self-attention and utilizes four attention heads to model four common reasoning patterns, respectively, which can cover more relational triples than previous methods. Then, to address the second issue, we propose a self-distillation training framework, which contains two branches sharing parameters. In the first branch, we first randomly mask some entity pair feature vectors in the document, and then train our reasoning module to infer their relations by exploiting the feature information of other related entity pairs. By doing so, we can explicitly model the process of relational reasoning. However, because the additional masking operation is not used during testing, it causes an input gap between training and testing scenarios, which would hurt the model performance. To reduce this gap, we perform conventional supervised training without masking operation in the second branch and utilize Kullback-Leibler divergence loss to minimize the difference between the predictions of the two branches. Finally, we conduct comprehensive experiments on three benchmark datasets, of which experimental results demonstrate that our model consistently outperforms all competitive baselines. Our source code is available at https://github.com/DeepLearnXMU/DocRE-SD

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Robin发布了新的文献求助10
刚刚
hihihi完成签到 ,获得积分10
刚刚
SciGPT应助豆豆小baby采纳,获得10
刚刚
1秒前
1秒前
白苹果发布了新的文献求助10
1秒前
hohokuz发布了新的文献求助10
1秒前
结实芝麻完成签到 ,获得积分10
2秒前
研友_Z6Gm58完成签到 ,获得积分10
2秒前
sh完成签到,获得积分10
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
3秒前
华仔应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得70
3秒前
buno应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
涵青夏完成签到,获得积分10
3秒前
Linos应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
4秒前
孤独的远山完成签到,获得积分10
4秒前
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
残剑月应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836