材料科学
降级(电信)
有机太阳能电池
活动层
接受者
热稳定性
堆积
结晶
化学物理
光活性层
化学工程
光电子学
纳米技术
图层(电子)
复合材料
聚合物
有机化学
计算机科学
化学
工程类
物理
电信
薄膜晶体管
凝聚态物理
作者
Jingming Xin,Chao Zhao,Ziqi Geng,Wenyue Xue,Zhenyu Chen,Chunpeng Song,Han Yan,Qiuju Liang,Zongcheng Miao,Wei Ma,Jiangang Liu
标识
DOI:10.1002/aenm.202401433
摘要
Abstract Organic solar cells (OSCs) achieved performance booming benefiting from the emerging of non‐fullerene acceptors, while inadequate device stability hampers their further application. At present, the prevalent belief attributes the inevitable thermal degradation of OSC device to morphological instability caused by excessive phase separation and crystallization in the active layer during device operation. However, it is inapplicable for state‐of‐art Y6‐based devices which strongly degrade before large‐scale morphology change. Herein, an alternative degradation mechanism is elucidated wherein molecular orientation change and demixing induced performance degradation in Y6‐based devices. Distinct from IT‐4F‐based counterpart, Y6‐based devices suffer severe thermal degradation dominated by open‐circuit voltage ( V OC ) and fill factor ( FF ) losses. The V OC loss is attributed to molecular orientation transition of polymer donors from edge‐on to face‐on, leading to a strong built‐in potential reduction and increase in non‐radiative loss due to energy level shifting. As for FF decay, discontinuous acceptor phases result in electron mobility decrease by over orders of magnitude, originating from the increased molecular stacking and phase separation. This work reveals the thermal degradation mechanism for Y6‐based devices and correlates the photoelectric properties with morphology instability, which will offer guidance for improving the stability of high‐performance OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI