PETNet: A YOLO-based prior enhanced transformer network for aerial image detection

计算机科学 保险丝(电气) 航空影像 人工智能 变压器 计算机视觉 目标检测 航空影像 特征(语言学) 图像(数学) 模式识别(心理学) 工程类 电压 电气工程 语言学 哲学
作者
Tianyu Wang,Zhongjing Ma,Tao Yang,Suli Zou
出处
期刊:Neurocomputing [Elsevier]
卷期号:547: 126384-126384 被引量:11
标识
DOI:10.1016/j.neucom.2023.126384
摘要

Unmanned aerial vehicles (UAVs) have been applied to inspect in various scenarios due to their high efficiency, low cost, and excellent mobility. However, the objects in aerial images are much smaller and denser than general objects, causing it difficult for current object detection methods to achieve the expected results. To solve this issue, a prior enhanced Transformer network (PETNet) based on YOLO is proposed in this paper. Specifically, a novel prior enhanced Transformer (PET) module and a one-to-many feature fusion (OMFF) mechanism are proposed to embed into the network. Two additional detection heads are added to the shallow feature maps. In this work, PET is used to capture enhanced global information to improve the expressive ability of the network. The OMFF aims to fuse multi-type features to minimize the information loss of small objects. In addition, the added detection heads provide more possibility of detecting smaller-scale objects, and the extended multi-head parallel detection is more suitable for the multi-scale transformation of objects in aerial images. On the VisDrone-2021 and UAVDT databases, the proposed PETNet achieves state-of-the-art results with average precision (AP) of 35.3 and 21.5, respectively, which indicates that the proposed network is more suitable for aerial image detection and is of a great reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助一颗星采纳,获得10
1秒前
unfa发布了新的文献求助10
1秒前
自觉从筠完成签到 ,获得积分10
2秒前
嘻嘻嘻完成签到 ,获得积分10
2秒前
zzh完成签到,获得积分10
5秒前
10秒前
Hello应助gdwang1973采纳,获得10
11秒前
妮子要学习完成签到,获得积分10
13秒前
程勋航完成签到,获得积分10
13秒前
mingw发布了新的文献求助30
13秒前
修yx发布了新的文献求助10
13秒前
懦弱的祥完成签到 ,获得积分10
14秒前
personking完成签到,获得积分10
15秒前
17秒前
17秒前
一颗星发布了新的文献求助10
17秒前
17秒前
香蕉觅云应助MINNIE采纳,获得10
18秒前
心灵美鹤轩完成签到,获得积分10
19秒前
蒋时晏完成签到,获得积分0
21秒前
mhl11应助一颗星采纳,获得10
22秒前
mhl11应助一颗星采纳,获得10
22秒前
美好的如蓉完成签到,获得积分10
24秒前
26秒前
修yx完成签到,获得积分10
26秒前
善学以致用应助OPV采纳,获得10
26秒前
苏简的猫完成签到,获得积分10
27秒前
稳重的大白完成签到 ,获得积分10
28秒前
29秒前
29秒前
jzh发布了新的文献求助10
30秒前
li完成签到 ,获得积分10
33秒前
34秒前
35秒前
35秒前
一笑奈何完成签到,获得积分10
36秒前
自行设置发布了新的文献求助10
37秒前
充电宝应助jzh采纳,获得10
38秒前
40秒前
天晴最好发布了新的文献求助10
41秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339570
求助须知:如何正确求助?哪些是违规求助? 2967508
关于积分的说明 8630152
捐赠科研通 2647082
什么是DOI,文献DOI怎么找? 1449453
科研通“疑难数据库(出版商)”最低求助积分说明 671418
邀请新用户注册赠送积分活动 660334