PETNet: A YOLO-based prior enhanced transformer network for aerial image detection

计算机科学 保险丝(电气) 航空影像 人工智能 变压器 计算机视觉 目标检测 航空影像 特征(语言学) 图像(数学) 模式识别(心理学) 工程类 电压 语言学 电气工程 哲学
作者
Tianyu Wang,Zhongjing Ma,Tao Yang,Suli Zou
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:547: 126384-126384 被引量:20
标识
DOI:10.1016/j.neucom.2023.126384
摘要

Unmanned aerial vehicles (UAVs) have been applied to inspect in various scenarios due to their high efficiency, low cost, and excellent mobility. However, the objects in aerial images are much smaller and denser than general objects, causing it difficult for current object detection methods to achieve the expected results. To solve this issue, a prior enhanced Transformer network (PETNet) based on YOLO is proposed in this paper. Specifically, a novel prior enhanced Transformer (PET) module and a one-to-many feature fusion (OMFF) mechanism are proposed to embed into the network. Two additional detection heads are added to the shallow feature maps. In this work, PET is used to capture enhanced global information to improve the expressive ability of the network. The OMFF aims to fuse multi-type features to minimize the information loss of small objects. In addition, the added detection heads provide more possibility of detecting smaller-scale objects, and the extended multi-head parallel detection is more suitable for the multi-scale transformation of objects in aerial images. On the VisDrone-2021 and UAVDT databases, the proposed PETNet achieves state-of-the-art results with average precision (AP) of 35.3 and 21.5, respectively, which indicates that the proposed network is more suitable for aerial image detection and is of a great reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci喷涌而出完成签到,获得积分20
刚刚
MY999应助小圆圈采纳,获得30
1秒前
清爽电脑应助棋士采纳,获得10
1秒前
任性海冬发布了新的文献求助30
1秒前
1秒前
张可爱完成签到,获得积分10
1秒前
1秒前
Surpass完成签到,获得积分10
2秒前
2秒前
2秒前
Akim应助seven采纳,获得10
3秒前
qqqq22完成签到,获得积分10
3秒前
77发布了新的文献求助10
3秒前
上官若男应助sdh11133采纳,获得10
3秒前
水水完成签到,获得积分10
3秒前
独特凡松完成签到,获得积分10
3秒前
归海一刀完成签到,获得积分10
4秒前
LCCCC完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助顾陌采纳,获得10
4秒前
我要毕业完成签到,获得积分10
5秒前
烟花应助忧郁的猕猴桃采纳,获得10
5秒前
嘻嘻完成签到,获得积分10
5秒前
浩瀚完成签到,获得积分10
6秒前
Ljx4869发布了新的文献求助10
6秒前
sjj发布了新的文献求助10
7秒前
时闲应助勤奋黄采纳,获得20
7秒前
李沐唅完成签到 ,获得积分10
7秒前
研途者完成签到,获得积分10
8秒前
怡然云朵发布了新的文献求助10
8秒前
寒冷的凝旋完成签到,获得积分10
8秒前
17完成签到,获得积分10
9秒前
YZJing完成签到,获得积分10
9秒前
9秒前
果实发布了新的文献求助10
10秒前
10秒前
10秒前
小瓶子完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118