A Latent Fingerprint in the Wild Database

计算机科学 指纹(计算) 数据库 指纹识别 人工智能 情报检索
作者
Xinwei Liu,Kiran Raja,Renfang Wang,Hong Qiu,Hucheng Wu,Dechao Sun,Qiguang Zheng,Nian Liu,Xiaoxia Wang,Gehang Huang,Raghavendra Ramachandra,Christoph Busch
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3703-3718
标识
DOI:10.1109/tifs.2024.3368892
摘要

Latent fingerprints are among the most important and widely used evidence in crime scenes, digital forensics and law enforcement worldwide. Despite the number of advancements reported in recent works, we note that significant open issues such as independent benchmarking and lack of large-scale evaluation databases for improving the algorithms are inadequately addressed. The available databases are mostly of semi-public nature, lack of acquisition in the wild environment, and post-processing pipelines. Moreover, they do not represent a realistic capture scenario similar to real crime scenes, to benchmark the robustness of the algorithms. Further, existing databases for latent fingerprint recognition do not have a large number of unique subjects/fingerprint instances or do not provide ground truth/reference fingerprint images to conduct a cross-comparison against the latent. In this paper, we introduce a new wild large-scale latent fingerprint database that includes five different acquisition scenarios: reference fingerprints from (1) optical and (2) capacitive sensors, (3) smartphone fingerprints, latent fingerprints captured from (4) wall surface, (5) Ipad surface, and (6) aluminium foil surface. The new database consists of 1,318 unique fingerprint instances captured in all above mentioned settings. A total of 2,636 reference fingerprints from optical and capacitive sensors, 1,318 fingerphotos from smartphones, and 9,224 latent fingerprints from each of the 132 subjects were provided in this work. The dataset is constructed considering various age groups, equal representations of genders and backgrounds. In addition, we provide an extensive set of analysis of various subset evaluations to highlight open challenges for future directions in latent fingerprint recognition research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助无情飞丹采纳,获得10
刚刚
阳光冰颜完成签到 ,获得积分10
1秒前
傻傻尊主发布了新的文献求助10
2秒前
苏书白应助唯一采纳,获得10
2秒前
感动语蝶发布了新的文献求助10
3秒前
慕青应助YANGLan采纳,获得10
3秒前
CodeCraft应助柿饼采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
zw完成签到,获得积分0
6秒前
6秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
jimmyhui发布了新的文献求助10
8秒前
8秒前
9秒前
bolunxier发布了新的文献求助10
9秒前
9秒前
wait完成签到,获得积分10
9秒前
Hello应助rzy采纳,获得10
10秒前
小朋友完成签到 ,获得积分10
10秒前
开心牛排完成签到,获得积分10
11秒前
13秒前
13秒前
Luke发布了新的文献求助10
13秒前
我是老大应助刘根采纳,获得10
14秒前
16秒前
无情飞丹发布了新的文献求助10
16秒前
ZXFFF发布了新的文献求助10
16秒前
SciGPT应助冯娇娇采纳,获得10
17秒前
18秒前
18秒前
18秒前
19秒前
tingting发布了新的文献求助10
19秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721