Gradient Calibration for Non-I.I.D. Federated Learning

校准 计算机科学 人工智能 数学 统计
作者
Jiachen Li,Yuchao Zhang,Yiping Li,Xiangyang Gong,Wendong Wang
标识
DOI:10.1145/3615593.3615721
摘要

Federated learning (FL) has yielded impressive results in recent years. However, its effectiveness on non-independently and identically distributed (non-i.i.d) data remains challenging. Existing work aims to address this challenge through client selection strategies or modifications to the client objective function. Despite these efforts, we contend that existing methods are unable to fully leverage client gradients. In this paper, we posit that the challenge of non-i.i.d data stems primarily from conflicting gradients among clients, resulting in deviations in both gradient magnitude and direction. Building on this insight, we propose a simple plug-in, named the Federated Gradient Tailor (FGT), to mitigate the non-i.i.d challenge by identifying and calibrating conflicting gradients before federated aggregation. To evaluate the efficacy of our approach, we conduct a series of experiments on simulated non-i.i.d datasets and demonstrate that the Federated Gradient Tailor significantly improves inference accuracy by 5% and achieves 6 times convergence speedup. Our findings highlight the value of explicitly addressing conflicting gradients in non-i.i.d data, as well as the effectiveness of the proposed Federated Gradient Tailor. This contribution has implications for further enhancing the performance of FL in real-world settings with non-i.i.d data distributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不想干活应助单纯板栗采纳,获得10
1秒前
1秒前
1秒前
hxm完成签到,获得积分10
1秒前
瘦瘦牛排发布了新的文献求助10
1秒前
MiYinZzz完成签到,获得积分10
1秒前
橙子完成签到,获得积分10
1秒前
科研通AI6应助称心元枫采纳,获得10
1秒前
hoya完成签到,获得积分10
2秒前
2秒前
2秒前
逝水无痕发布了新的文献求助10
3秒前
凶狠的秋柳完成签到,获得积分20
4秒前
kyou完成签到,获得积分10
4秒前
4秒前
TTXS发布了新的文献求助10
5秒前
缥缈纲发布了新的文献求助10
5秒前
Hannibal完成签到,获得积分10
5秒前
涵Allen发布了新的文献求助10
5秒前
打打应助尤涅若采纳,获得10
5秒前
杂化轨道退役研究员完成签到,获得积分10
5秒前
禛禛发布了新的文献求助10
5秒前
大个应助1113采纳,获得10
5秒前
桐桐应助camellia采纳,获得10
5秒前
5D完成签到,获得积分10
6秒前
6秒前
阿军完成签到,获得积分10
6秒前
在水一方应助yangxt-iga采纳,获得10
6秒前
叶子完成签到,获得积分10
7秒前
7秒前
萝卜干完成签到,获得积分10
8秒前
8秒前
Joie完成签到,获得积分10
8秒前
8秒前
9秒前
小羊发布了新的文献求助10
9秒前
9秒前
9秒前
Lucky发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576530
求助须知:如何正确求助?哪些是违规求助? 3995739
关于积分的说明 12369777
捐赠科研通 3669687
什么是DOI,文献DOI怎么找? 2022376
邀请新用户注册赠送积分活动 1056390
科研通“疑难数据库(出版商)”最低求助积分说明 943637