亚硝酸盐
吸附
检出限
尿素
化学
荧光
亚硝酸钠
线性范围
核化学
无机化学
色谱法
有机化学
硝酸盐
物理
量子力学
作者
Xiaohui Hao,Ao Shen,Ruochen Duan,Panqing Zhang,Lingwei Xue,Xiuqing Zhao,Xuebin Wang,Xue Li,Yunxu Yang
标识
DOI:10.1016/j.jhazmat.2023.133326
摘要
In this paper, a novel All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform was generated by microcrystalline cellulose (MCC) functionalized with pH-response probe (CI), MIL-100 (Fe) and sodium alginate (SA), which was as a carrier of urea to adsorb, remove and monitor NO2-. Under acidic condition, the fluorescent hydrogel platform could produce N2, CO2 and H2O through the diazotization and redox reaction between urea and NO2- with a removal efficiency up to 99.8%, and could also character a good adsorption property for NO2- due to the positive charges of protonation (the maximum adsorption capacity was 21.67 mg g-1), and the adsorption kinetics conformed to pseudo-second-order model. By carried out the NO2- removal step in fluorescent hydrogel platform, NO2- could also be detected indirectly by sensing the changes of pH within 15 min. The linear response range was 0-0.005 M, and the detection limit (LOD) was 74 μM. These results demonstrated that this All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform had great potential in environment. This strategy for the removal and monitoring of NO2- could be employed to related applications in water purification and environmental protection. ENVIRONMENTAL IMPLICATION: Nitrite is one of the important indicators of water monitoring, which is harmful to human and environment. The removal and monitoring of nitrite in industrial wastewater and surface water is very important, but there are no studies about it at present. Based on the fact that urea can react with nitrite to produce green products, we synthesized a novel functional hydrogel to achieve adsorption, removal and fluorescence monitoring of nitrite for the first time. Besides, the practicability of the material in environmental water samples was verified through the detection of nitrite in simulated wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI