Ice accretion characteristics on rotating aeroengine fan blades

材料科学 机械 增值(金融) 气象学 航空航天工程 物理 天体物理学 工程类
作者
Linchuan Tian,Haiyang Hu,Ramsankar Veerakumar,Hui Hu
出处
期刊:Experimental Thermal and Fluid Science [Elsevier]
卷期号:155: 111181-111181 被引量:1
标识
DOI:10.1016/j.expthermflusci.2024.111181
摘要

An experimental study was conducted to characterize the dynamic ice accretion process on rotating aero-engine fan blades to evaluate the icing-induced detrimental effects on the fan rotor performance. A scaled spinner-fan model was installed in an Icing Research Tunnel and exposed to typical rime and glaze icing conditions. It was found that, while ice structures accreted on both the suction and pressure surfaces of the fan blades, more ice accumulated in the region near the blade roots than those near the blade tips. The ice structures accreted on the fan blades not only deteriorated the shapes of the deliberately designed blades greatly but also blocked the airflow passages through the fan rotor substantially, regardless of the icing type. More specifically, the thickness of the fan blades was found to increase up to 40 % after undergoing 480 s of the rime icing experiment, the airflow passages were blocked by up to 14 % due to the rime ice accretion near the blade roots, resulting in about 70 % reduction of the air pressure increment across the fan rotor. Due to the combined effects of the aerodynamic shear forces and centrifugal forces associated with the rotating motion, substantial water runback was observed over the rotating blade surfaces under the glaze icing condition, resulting in the rapid growth of more complex "needle-like" icicles along the blade leading edges. Glaze ice accretion was found to cause more serious and faster performance degradation to the fan rotor than the rime icing scenario. While the airflow passages between the neighbouring blades were blocked by up to 18 % after undergoing 120 s of the glaze icing experiment, the airflow was found to be depressurized, instead of pressurized, after passing the iced fan rotor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小九完成签到,获得积分10
刚刚
1秒前
Z.发布了新的文献求助10
2秒前
2秒前
明亮的溪灵完成签到,获得积分10
2秒前
3秒前
wcywd发布了新的文献求助10
3秒前
烟花应助Fiona采纳,获得10
4秒前
5秒前
喜喜发布了新的文献求助10
6秒前
xiaoyao发布了新的文献求助50
9秒前
9秒前
李健应助LiM采纳,获得10
10秒前
Fandash发布了新的文献求助10
10秒前
李健的小迷弟应助小徐采纳,获得10
10秒前
轻吟发布了新的文献求助10
10秒前
华仔应助丁丁采纳,获得10
10秒前
傻傻的小刺猬完成签到,获得积分10
11秒前
11秒前
11秒前
wcywd完成签到,获得积分10
11秒前
wodel完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
自然垣发布了新的文献求助10
15秒前
15秒前
15秒前
zhangmeimei发布了新的文献求助10
15秒前
pzk发布了新的文献求助30
16秒前
黄金矿工发布了新的文献求助10
16秒前
liuheqian发布了新的文献求助10
17秒前
科研通AI5应助tramp采纳,获得10
17秒前
19秒前
19秒前
20秒前
22秒前
乐乐应助欣慰若采纳,获得10
22秒前
活泼若烟完成签到,获得积分10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797