清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Realization of future neuro-biological architecture in power efficient memristors of Fe3O4/WS2 hybrid nanocomposites

神经形态工程学 材料科学 记忆电阻器 纳米复合材料 可扩展性 电阻随机存取存储器 纳米技术 计算机科学 电子工程 人工神经网络 人工智能 电气工程 电压 工程类 数据库
作者
Faisal Ghafoor,Muhammad Ismail,Honggyun Kim,Muhammad Ali,Shania Rehman,Bilal Ghafoor,Muhammad Asghar Khan,Harshada Patil,Sungjun Kim,Muhammad Farooq Khan,Deok‐kee Kim
出处
期刊:Nano Energy [Elsevier]
卷期号:122: 109272-109272 被引量:26
标识
DOI:10.1016/j.nanoen.2024.109272
摘要

The future generation of digital technology will heavily rely on power efficient non-volatile resistive memory systems as a potential alternative to flash memory due to its limitations in scalability and endurance. To attain the commercial benchmark, memristors have still lacked performance. This study reports a novel and cost-effective solution processable method for growing surface-modified hybrid nanocomposites (Nc) on a large scale, as an active layer. The solution-processed synthesis approach used for Ag/Fe50W50/Pt hybrid nanocomposite memristor device results in the formation of heterophase grain boundaries, which create residual filaments along these boundaries. The device Fe3O4-WS2(Nc) shows excellent performance, having ultra-low energy consumption (0.1fJ), high reproducibility (10 devices), scalability, excellent endurance (106), and excellent environment stability. Density functional theory (DFT) simulations reveal that structural symmetry distortion and interfacial interaction of hybrid nanocomposite at the interface plays a vital role in the switching mechanism. As high-performance electronic synapses, the optimal pulse scheme enables a steady interaction of short- and long-term plasticity principles, such as spike -time dependent plasticity (STDP) and pulse pair facilitation (PPF), essential for learning and neuromorphic computing analogous to human brain. Moreover, by using Modified National Institute of Standards and Technology (MINST), the memristor device attained a high learning accuracy of 95.4% under convolution neural network (CNN) simulations. The present study revealed that the performance of hybrid-nanocomposite memristors could lead to efficient future neuromorphic architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
消炎药发布了新的文献求助10
刚刚
Akim应助niko采纳,获得10
4秒前
英俊的铭应助niko采纳,获得10
4秒前
英俊的铭应助niko采纳,获得10
4秒前
bkagyin应助niko采纳,获得10
4秒前
FashionBoy应助niko采纳,获得10
4秒前
科目三应助niko采纳,获得10
4秒前
852应助niko采纳,获得30
4秒前
李健应助niko采纳,获得10
4秒前
爆米花应助niko采纳,获得10
4秒前
天天快乐应助niko采纳,获得10
4秒前
科研通AI2S应助CRUSADER采纳,获得10
6秒前
FashionBoy应助niko采纳,获得10
10秒前
领导范儿应助niko采纳,获得10
10秒前
乐乐应助niko采纳,获得10
10秒前
星辰大海应助niko采纳,获得10
10秒前
搜集达人应助niko采纳,获得50
10秒前
隐形曼青应助niko采纳,获得10
10秒前
李健应助niko采纳,获得10
10秒前
Akim应助niko采纳,获得10
10秒前
SciGPT应助niko采纳,获得10
10秒前
脑洞疼应助niko采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
消炎药完成签到,获得积分10
17秒前
常有李完成签到,获得积分10
49秒前
两个榴莲完成签到,获得积分0
53秒前
bastien完成签到 ,获得积分10
1分钟前
1分钟前
Jenny完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jenny完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981