Realization of future neuro-biological architecture in power efficient memristors of Fe3O4/WS2 hybrid nanocomposites

神经形态工程学 材料科学 记忆电阻器 纳米复合材料 可扩展性 电阻随机存取存储器 纳米技术 计算机科学 电子工程 人工神经网络 人工智能 电气工程 电压 工程类 数据库
作者
Faisal Ghafoor,Muhammad Ismail,Honggyun Kim,Muhammad Ali,Shania Rehman,Bilal Ghafoor,Muhammad Asghar Khan,Harshada Patil,Sungjun Kim,Muhammad Farooq Khan,Deok‐kee Kim
出处
期刊:Nano Energy [Elsevier]
卷期号:122: 109272-109272 被引量:26
标识
DOI:10.1016/j.nanoen.2024.109272
摘要

The future generation of digital technology will heavily rely on power efficient non-volatile resistive memory systems as a potential alternative to flash memory due to its limitations in scalability and endurance. To attain the commercial benchmark, memristors have still lacked performance. This study reports a novel and cost-effective solution processable method for growing surface-modified hybrid nanocomposites (Nc) on a large scale, as an active layer. The solution-processed synthesis approach used for Ag/Fe50W50/Pt hybrid nanocomposite memristor device results in the formation of heterophase grain boundaries, which create residual filaments along these boundaries. The device Fe3O4-WS2(Nc) shows excellent performance, having ultra-low energy consumption (0.1fJ), high reproducibility (10 devices), scalability, excellent endurance (106), and excellent environment stability. Density functional theory (DFT) simulations reveal that structural symmetry distortion and interfacial interaction of hybrid nanocomposite at the interface plays a vital role in the switching mechanism. As high-performance electronic synapses, the optimal pulse scheme enables a steady interaction of short- and long-term plasticity principles, such as spike -time dependent plasticity (STDP) and pulse pair facilitation (PPF), essential for learning and neuromorphic computing analogous to human brain. Moreover, by using Modified National Institute of Standards and Technology (MINST), the memristor device attained a high learning accuracy of 95.4% under convolution neural network (CNN) simulations. The present study revealed that the performance of hybrid-nanocomposite memristors could lead to efficient future neuromorphic architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbpu230701发布了新的文献求助10
刚刚
1秒前
DD发布了新的文献求助10
1秒前
1秒前
JM完成签到,获得积分10
1秒前
慕青应助满意紫丝采纳,获得10
1秒前
安静的毛豆完成签到,获得积分20
2秒前
情怀应助文右三采纳,获得10
2秒前
优秀思卉发布了新的文献求助30
3秒前
4秒前
冯前浪完成签到,获得积分20
5秒前
木木木发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
QDU应助第五个完全数采纳,获得20
8秒前
tiptip应助李里哩采纳,获得10
9秒前
SciGPT应助李里哩采纳,获得10
9秒前
9秒前
周繁发布了新的文献求助10
9秒前
优秀思卉完成签到,获得积分10
9秒前
大气的苠完成签到,获得积分10
10秒前
Hello应助科研鲁宾孙采纳,获得10
10秒前
赘婿应助冯前浪采纳,获得30
11秒前
ZJFL发布了新的文献求助10
11秒前
11秒前
酒剑仙完成签到,获得积分10
12秒前
一一发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
15秒前
Auditor发布了新的文献求助10
16秒前
CodeCraft应助帅气航空采纳,获得10
17秒前
17秒前
Awei完成签到,获得积分10
18秒前
小桶爸爸发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978