Hyperspectral Image Classification of Brain-Inspired Spiking Neural Network Based on Approximate Derivative Algorithm

计算机科学 高光谱成像 人工智能 尖峰神经网络 卷积神经网络 算法 深度学习 人工神经网络 模式识别(心理学)
作者
Yang Liu,Kejing Cao,Rui Li,Hongxia Zhang,Liming Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2022.3207098
摘要

Recently, deep learning methods have made significant progress in solving hyperspectral images (HSIs) classification problems of high-dimensional features, band redundancy, and spectral mixture. However, the deep neural network is too complex, with a long training time and high energy consumption, making it difficult to deploy on edge computing devices. In order to solve the above problems, this paper proposes a brain-inspired computing framework based on the spiking leaky integrate-and-fire neuron model for HSIs classification. Then we design an approximate derivative algorithm to solve the non-differentiable spike activity of the spiking neuron. The framework uses direct coding to generate spatiotemporal spikes for input HSI and achieves efficient extraction of spatial-spectral features through spiking standard convolution and spiking depthwise separable convolution. Extensive experiments are performed on four benchmark hyperspectral data sets and two public unmanned aerial vehicle-borne hyperspectral data sets. Experiments show that the proposed model has the advantages of high classification accuracy and fewer spiking time steps. The proposed model can save about 10 times computational energy consumption compared with the CNN of the same architecture. This research has great significance for overcoming the technical bottleneck of HSI classification based on brain-inspired computing, solving the critical problems of mobile computing in unmanned autonomous systems, and realizing the engineering application of unmanned aerial vehicles and software-defined satellites. The source code will be made available at https://github.com/Katherine-Cao/HSI_SNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧七七发布了新的文献求助10
1秒前
木子完成签到 ,获得积分10
2秒前
2秒前
小鱼爱吃肉应助babybluebabe采纳,获得10
3秒前
丸子鱼完成签到 ,获得积分10
3秒前
4秒前
一只半夏完成签到,获得积分10
5秒前
冷艳哈密瓜完成签到 ,获得积分10
6秒前
xxp发布了新的文献求助20
6秒前
要发核心刊的阿爽完成签到,获得积分10
8秒前
诚心的金毛完成签到,获得积分10
9秒前
lili完成签到 ,获得积分10
9秒前
bokboksing发布了新的文献求助10
9秒前
木仔发布了新的文献求助10
10秒前
11秒前
Poik完成签到,获得积分10
11秒前
快乐的安彤完成签到 ,获得积分10
13秒前
15秒前
卿欣完成签到 ,获得积分10
17秒前
Lucas应助缥缈傥采纳,获得10
18秒前
19秒前
Zzz发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
善学以致用应助萧七七采纳,获得10
21秒前
swordshine完成签到,获得积分10
22秒前
22秒前
Byla完成签到,获得积分10
23秒前
xxp完成签到,获得积分10
24秒前
24秒前
24秒前
团子发布了新的文献求助10
25秒前
任盈盈完成签到,获得积分10
26秒前
kitalno完成签到,获得积分10
28秒前
xiaowu应助开放的大侠采纳,获得10
28秒前
林天完成签到,获得积分10
28秒前
zls发布了新的文献求助10
29秒前
斯文败类应助逆天子采纳,获得80
29秒前
缥缈傥发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304357
求助须知:如何正确求助?哪些是违规求助? 2938343
关于积分的说明 8488428
捐赠科研通 2612836
什么是DOI,文献DOI怎么找? 1426905
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647376