Carbon molecular sieve membranes derived from hydrogen-bonded organic frameworks for CO2/CH4 separation

分子筛 微型多孔材料 化学工程 气体分离 热解 热稳定性 无定形固体 多孔性 聚合物 分子 化学 材料科学 有机化学 吸附 复合材料 工程类 生物化学
作者
Shuo Liu,Zixi Kang,Lili Fan,Xuting Li,Bingchen Zhang,Feng Yang,Hongyan Liu,Weidong Fan,Rongming Wang,Daofeng Sun
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:678: 121674-121674 被引量:23
标识
DOI:10.1016/j.memsci.2023.121674
摘要

Carbon molecular sieve (CMS) membranes are ideal candidates for natural gas separation due to their rigid pore structures and stability. The chemical composite and spatial configuration of the used precursors for deriving CMS membranes can greatly influence the final microporous structure and separation performance of the membranes. Most CMS membranes are transformed from amorphous precursors such as polymers nowadays. Here, for the first time, we report a new type of CMS membrane derived from a crystalline porous hydrogen-bonded organic framework membrane (named HCMS). The conversion process has been studied with the characterization of TGA, FTIR, XRD, SEM, and pore size distribution. The effect of pyrolysis temperature on the membrane structure has been investigated to achieve optimized CO2/CH4 separation performance. On the one hand, as the pyrolysis temperature increases from 550 to 650 °C, the pore size distribution of HCMS membrane is narrowed, which is conducive to improving the molecular sieving effect of the membrane. On the other hand, higher ratios of graphitic N and pyrrolic N, which show better affinity for CO2 molecules than pyridinic N, are obtained on the HCMS membranes, leading to more favorable adsorption of CO2. The optimized HCMS membrane pyrolyzed at 600 °C shows a remarkable CO2/CH4 selectivity of 128 and excellent separation stability at varying temperatures and pressures. The HCMS membranes derived from the crystalline HOF precursor can also maintain a stable separation performance against physical aging. The results reported in this work may open the door to constructing CMS membranes with the precursor of crystalline porous membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoxiaomi应助阳光下的星星采纳,获得20
1秒前
爱X7的嘛喽完成签到,获得积分10
1秒前
Louise完成签到,获得积分10
1秒前
1秒前
喜悦中道应助白白采纳,获得10
2秒前
CipherSage应助dong采纳,获得10
3秒前
3秒前
3秒前
zz完成签到 ,获得积分10
3秒前
3秒前
223344完成签到,获得积分10
4秒前
欧阳半仙完成签到,获得积分10
4秒前
5秒前
bkagyin应助xm采纳,获得10
5秒前
赘婿应助gwh68964402gwh采纳,获得10
5秒前
我瞎蒙完成签到,获得积分10
6秒前
yzz发布了新的文献求助10
6秒前
赖道之发布了新的文献求助10
7秒前
熊猫完成签到,获得积分10
7秒前
Yvonne发布了新的文献求助10
8秒前
NANA发布了新的文献求助10
8秒前
yoyocici1505完成签到,获得积分10
8秒前
ding应助平常的擎宇采纳,获得30
9秒前
於松应助Chang采纳,获得20
9秒前
刻苦问柳完成签到,获得积分10
9秒前
呆萌小鸭子完成签到 ,获得积分10
9秒前
白白完成签到,获得积分10
9秒前
Lxy完成签到,获得积分10
9秒前
10秒前
橙子味完成签到 ,获得积分10
10秒前
11秒前
11秒前
dong完成签到,获得积分10
11秒前
12秒前
科研通AI5应助刘芸芸采纳,获得10
13秒前
baijiayi完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762