鸟氨酸脱羧酶
药理学
化学
虚拟筛选
生物化学
药物发现
生物
酶
作者
Sabahat Yasmeen Sheikh,Waseem Ahmad Ansari,Firoj Hassan,Tabrez Faruqui,Mohammad Faheem Khan,Yusuf Akhter,Abdul Rahman Khan,Maqsood A. Siddiqui,Abdulaziz A. Al‐Khedhairy,Malik Nasibullah
摘要
Abstract Visceral leishmaniasis (VL) is caused by Leishmania donovani ( Ld ), and most cases occur in Brazil, East Africa, and India. The treatment for VL is limited and has many adverse effects. The development of safer and more efficacious drugs is urgently needed. Drug repurposing is one of the best processes to repurpose existing drugs. Ornithine decarboxylase (ODC) is an important target against L. donovani in the polyamine biosynthesis pathway. In this study, we have modeled the 3D structure of ODC and performed high‐throughput virtual screening of 8630 ZINC database ligands against Leishmania donovani ornithine decarboxylase ( Ld ODC), selecting 45 ligands based on their high binding score. It is further validated through molecular docking simulation and the selection of the top two lead molecules (ceftaroline fosamil and rimegepant) for Molecular Dynamics (MD) simulation, Density functional theory (DFT), and molecular mechanics generalized born surface area (MMGBSA) analysis. The results showed that the binding affinities of ceftaroline fosamil, and rimegepant are, respectively, −10.719 and 10.159 kcal/mol. The docking complexes of the two lead compounds, ceftaroline fosamil, and rimegepant, with the target ODC, were found stable during molecular dynamics simulations. Furthermore, the analysis of MMGBSA revealed that these compounds had a high binding free energy. The DFT analysis showed that the top lead molecules were more reactive than the standard drug (pentamidine). In‐silico findings demonstrated that ceftaroline fosamil, and rimegepant might be recognized as potent antagonists against ODC for the treatment of VL.
科研通智能强力驱动
Strongly Powered by AbleSci AI