Untrained deep network powered with explicit denoiser for phase recovery in inline holography

计算机科学 全息术 深度学习 人工神经网络 迭代重建 噪音(视频) 人工智能 降噪 算法 图像(数学) 光学 物理
作者
Ashwini S. Galande,Vikas Thapa,Hanu Phani Ram Gurram,Renu John
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:122 (13) 被引量:22
标识
DOI:10.1063/5.0144795
摘要

Single-shot reconstruction of the inline hologram is highly desirable as a cost-effective and portable imaging modality in resource-constrained environments. However, the twin image artifacts, caused by the propagation of the conjugated wavefront with missing phase information, contaminate the reconstruction. Existing end-to-end deep learning-based methods require massive training data pairs with environmental and system stability, which is very difficult to achieve. Recently proposed deep image prior (DIP) integrates the physical model of hologram formation into deep neural networks without any prior training requirement. However, the process of fitting the model output to a single measured hologram results in the fitting of interference-related noise. To overcome this problem, we have implemented an untrained deep neural network powered with explicit regularization by denoising (RED), which removes twin images and noise in reconstruction. Our work demonstrates the use of alternating directions of multipliers method (ADMM) to combine DIP and RED into a robust single-shot phase recovery process. The use of ADMM, which is based on the variable splitting approach, made it possible to plug and play different denoisers without the need of explicit differentiation. Experimental results show that the sparsity-promoting denoisers give better results over DIP in terms of phase signal-to-noise ratio (SNR). Considering the computational complexities, we conclude that the total variation denoiser is more appropriate for hologram reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Talha发布了新的文献求助10
1秒前
1秒前
清脆的梦寒完成签到,获得积分10
2秒前
2秒前
2秒前
一梦倾城发布了新的文献求助10
2秒前
2秒前
Mason完成签到,获得积分10
3秒前
Owen应助JMrider采纳,获得10
4秒前
莘莘完成签到 ,获得积分10
4秒前
星辰大海应助raoxray采纳,获得10
4秒前
Orange应助zhangcdoctor采纳,获得10
6秒前
一只羊发布了新的文献求助10
7秒前
博修发布了新的文献求助10
7秒前
genesquared完成签到,获得积分10
8秒前
渊思发布了新的文献求助10
8秒前
星辰大海应助linmo采纳,获得10
8秒前
YamDaamCaa应助qikkk采纳,获得30
9秒前
研友_LaNYNn发布了新的文献求助10
9秒前
Hello应助啦啦啦啦采纳,获得10
9秒前
莘莘发布了新的文献求助10
10秒前
BingyuDu完成签到 ,获得积分20
10秒前
星辰大海应助咕噜坚果采纳,获得10
12秒前
13秒前
zzzkyt发布了新的文献求助10
15秒前
汉堡包应助科研爱好者采纳,获得10
15秒前
15秒前
16秒前
17秒前
18秒前
饼藏发布了新的文献求助80
19秒前
领导范儿应助zzzkyt采纳,获得10
19秒前
19秒前
20秒前
打打应助刘刘宇航采纳,获得10
20秒前
21秒前
谦让的牛排完成签到 ,获得积分10
22秒前
22秒前
耶耶耶发布了新的文献求助10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578