Untrained deep network powered with explicit denoiser for phase recovery in inline holography

计算机科学 全息术 深度学习 人工神经网络 迭代重建 噪音(视频) 人工智能 降噪 算法 图像(数学) 光学 物理
作者
Ashwini S. Galande,Vikas Thapa,Hanu Phani Ram Gurram,Renu John
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:122 (13) 被引量:12
标识
DOI:10.1063/5.0144795
摘要

Single-shot reconstruction of the inline hologram is highly desirable as a cost-effective and portable imaging modality in resource-constrained environments. However, the twin image artifacts, caused by the propagation of the conjugated wavefront with missing phase information, contaminate the reconstruction. Existing end-to-end deep learning-based methods require massive training data pairs with environmental and system stability, which is very difficult to achieve. Recently proposed deep image prior (DIP) integrates the physical model of hologram formation into deep neural networks without any prior training requirement. However, the process of fitting the model output to a single measured hologram results in the fitting of interference-related noise. To overcome this problem, we have implemented an untrained deep neural network powered with explicit regularization by denoising (RED), which removes twin images and noise in reconstruction. Our work demonstrates the use of alternating directions of multipliers method (ADMM) to combine DIP and RED into a robust single-shot phase recovery process. The use of ADMM, which is based on the variable splitting approach, made it possible to plug and play different denoisers without the need of explicit differentiation. Experimental results show that the sparsity-promoting denoisers give better results over DIP in terms of phase signal-to-noise ratio (SNR). Considering the computational complexities, we conclude that the total variation denoiser is more appropriate for hologram reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜美的音响完成签到 ,获得积分10
1秒前
2秒前
HH应助wang5945采纳,获得10
2秒前
lois完成签到,获得积分10
3秒前
小篆完成签到 ,获得积分10
3秒前
火枪手发布了新的文献求助10
3秒前
4秒前
4秒前
落寞平萱完成签到,获得积分20
4秒前
坚定白风发布了新的文献求助10
5秒前
二师兄来挨打完成签到,获得积分10
6秒前
雪山飞龙发布了新的文献求助10
7秒前
7秒前
kryptonite完成签到 ,获得积分10
8秒前
董璐发布了新的文献求助10
9秒前
Tokgo发布了新的文献求助10
9秒前
布丁发布了新的文献求助10
9秒前
lr完成签到,获得积分20
11秒前
11秒前
11秒前
风趣安雁完成签到,获得积分10
12秒前
13秒前
佳亮辰发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
Pheonix1998完成签到,获得积分10
15秒前
CodeCraft应助nczpf2010采纳,获得10
18秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
18秒前
18秒前
19秒前
daladala发布了新的文献求助10
19秒前
21秒前
筋筋子发布了新的文献求助10
22秒前
木棉完成签到 ,获得积分10
22秒前
22秒前
小二郎应助文先生采纳,获得10
22秒前
22秒前
肥肉叉烧发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023