Untrained deep network powered with explicit denoiser for phase recovery in inline holography

计算机科学 全息术 深度学习 人工神经网络 迭代重建 噪音(视频) 人工智能 降噪 算法 图像(数学) 光学 物理
作者
Ashwini S. Galande,Vikas Thapa,Hanu Phani Ram Gurram,Renu John
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:122 (13) 被引量:24
标识
DOI:10.1063/5.0144795
摘要

Single-shot reconstruction of the inline hologram is highly desirable as a cost-effective and portable imaging modality in resource-constrained environments. However, the twin image artifacts, caused by the propagation of the conjugated wavefront with missing phase information, contaminate the reconstruction. Existing end-to-end deep learning-based methods require massive training data pairs with environmental and system stability, which is very difficult to achieve. Recently proposed deep image prior (DIP) integrates the physical model of hologram formation into deep neural networks without any prior training requirement. However, the process of fitting the model output to a single measured hologram results in the fitting of interference-related noise. To overcome this problem, we have implemented an untrained deep neural network powered with explicit regularization by denoising (RED), which removes twin images and noise in reconstruction. Our work demonstrates the use of alternating directions of multipliers method (ADMM) to combine DIP and RED into a robust single-shot phase recovery process. The use of ADMM, which is based on the variable splitting approach, made it possible to plug and play different denoisers without the need of explicit differentiation. Experimental results show that the sparsity-promoting denoisers give better results over DIP in terms of phase signal-to-noise ratio (SNR). Considering the computational complexities, we conclude that the total variation denoiser is more appropriate for hologram reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lancet发布了新的文献求助20
1秒前
森禾完成签到 ,获得积分10
4秒前
4秒前
上官若男应助曾经的帅哥采纳,获得10
7秒前
陈星翰完成签到,获得积分10
7秒前
stumm发布了新的文献求助10
9秒前
Chief完成签到,获得积分0
10秒前
10秒前
11秒前
奋斗成风发布了新的文献求助10
13秒前
浮游应助Kevin采纳,获得10
19秒前
浮游应助扬灵兮采纳,获得10
20秒前
安详的冷安完成签到,获得积分10
21秒前
烟花应助keke采纳,获得10
22秒前
还行吧完成签到 ,获得积分10
23秒前
俏皮的安萱完成签到 ,获得积分10
24秒前
材袅完成签到,获得积分10
25秒前
28秒前
盐焗鱼丸完成签到 ,获得积分10
29秒前
30秒前
30秒前
30秒前
31秒前
keke完成签到,获得积分10
33秒前
TNU发布了新的文献求助10
33秒前
34秒前
Bob发布了新的文献求助10
34秒前
37秒前
hilbet发布了新的文献求助10
39秒前
李琦完成签到 ,获得积分10
40秒前
auggy发布了新的文献求助10
40秒前
Bob完成签到,获得积分10
40秒前
42秒前
淡然葶完成签到 ,获得积分10
43秒前
44秒前
笨笨念文完成签到 ,获得积分10
47秒前
49秒前
56秒前
Cik完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523