Vapor compression and energy dissipation in a collapsing laser-induced bubble

声致发光 气泡 空化 物理 消散 机械 冲击波 背景(考古学) 休克(循环) 压缩性 热力学 医学 古生物学 生物 内科学
作者
Davide Bernardo Preso,Daniel Fuster,A. B. Sieber,Danail Obreschkow,Mohamed Farhat
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:7
标识
DOI:10.1063/5.0200361
摘要

The composition of the gaseous phase of cavitation bubbles and its role on the collapse remains to date poorly understood. In this work, experiments of single cavitation bubbles in aqueous ammonia serve as a novel approach to investigate the effect of the vapor contained in a bubble on its collapse. We find that the higher vapor pressure of more concentrated aqueous ammonia acts as a resistance to the collapse, reducing the total energy dissipation. In line with visual observation, acoustic measurements, and luminescence recordings, it is also observed that higher vapor pressures contribute to a more spherical collapse, likely hindering the growth of interface instabilities by decreasing the collapse velocities and accelerations. Remarkably, we evidence a strong difference between the effective damping and the energy of the shock emission, suggesting that the latter is not the dominant dissipation mechanism at collapse as predicted from classical correction models accounting for slightly compressible liquids. Furthermore, our results suggest that the vapor inside collapsing bubbles gets compressed, consistently with previous studies performed in the context of single bubble sonoluminescence, addressing the question about the ability of vapors to readily condense during a bubble collapse in similar regimes. These findings provide insight into the identification of the influence of the bubble content and the energy exchanges of the bubble with its surrounding media, eventually paving the way to a more efficient use of cavitation in engineering and biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
3秒前
浩浩浩发布了新的文献求助20
4秒前
qwe发布了新的文献求助10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
cocolu应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
6秒前
7秒前
zl发布了新的文献求助10
8秒前
9秒前
10秒前
隐形曼青应助可靠的寒风采纳,获得10
12秒前
笨笨娇完成签到 ,获得积分10
12秒前
Jin完成签到,获得积分10
12秒前
华大01发布了新的文献求助10
13秒前
搜集达人应助zl采纳,获得10
14秒前
16秒前
不喜完成签到,获得积分10
18秒前
20秒前
20秒前
大壮完成签到,获得积分10
21秒前
21秒前
不喜发布了新的文献求助10
22秒前
lzb发布了新的文献求助10
22秒前
23秒前
24秒前
37星河75发布了新的文献求助10
25秒前
咩咩洞发布了新的文献求助10
25秒前
欢呼的世平完成签到,获得积分10
25秒前
在水一方应助wnll采纳,获得10
26秒前
27秒前
123完成签到,获得积分20
27秒前
ZhihaoZhu发布了新的文献求助10
28秒前
北偶发布了新的文献求助10
28秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3321774
求助须知:如何正确求助?哪些是违规求助? 2953109
关于积分的说明 8563890
捐赠科研通 2630584
什么是DOI,文献DOI怎么找? 1439240
科研通“疑难数据库(出版商)”最低求助积分说明 667046
邀请新用户注册赠送积分活动 653495