Unsupervised Cryo-EM Images Denoising and Clustering Based on Deep Convolutional Autoencoder and K-Means++

聚类分析 人工智能 自编码 模式识别(心理学) 计算机科学 降噪 卷积神经网络 噪音(视频) 峰值信噪比 相互信息 深度学习 图像(数学)
作者
Dongxu Zhang,Yan Yang,Yih Huang,Bowen Liu,Qingbing Zheng,Jun Zhang,Ningshao Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1509-1521 被引量:2
标识
DOI:10.1109/tmi.2022.3231626
摘要

Cryo-electron microscopy (cryo-EM) is a widely used structural determination technique. Because of the extremely low signal-to-noise ratio (SNR) of images captured by cryo-EM, clustering single-particle cryo-EM images with high accuracy is challenging. To address this, we proposed an iterative denoising and clustering method based on a deep convolutional variational autoencoder and K-means++. The proposed method contains two modules: a denoising ResNet variational autoencoder (DRVAE), and Balance size K-means++ (BSK-means++). First, the DRVAE is trained in a fully unsupervised manner to initialize the neural network and obtain preliminary denoised images. Second, BSK-means++ is built for clustering denoised images, and images closer to class centers are divided into reliable samples. Third, the training of DRVAE is continued, while the class-average images are used as pseudo supervision of reliable samples to reserve more detailed information of denoised images. Finally, the second and third steps mentioned above can be performed jointly and iteratively until convergence occurs. The experimental results showed that the proposed method can generate reliable class average images and achieve better clustering accuracy and normalized mutual information than current methods. This study confirmed that DRVAE with BSK-means++ could achieve a good denoise performance on single-particle cryo-EM images, which can help researchers obtain information such as symmetry and heterogeneity of the target particles. In addition, the proposed method avoids the extreme imbalance of class size, which improves the reliability of the clustering result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
neko发布了新的文献求助10
1秒前
孤独念双发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
木雨洛完成签到,获得积分10
4秒前
sa1t发布了新的文献求助10
6秒前
bleu发布了新的文献求助10
7秒前
搞份炸鸡778完成签到,获得积分10
7秒前
葛力发布了新的文献求助10
9秒前
pp1230完成签到,获得积分10
9秒前
xingmeng完成签到,获得积分10
13秒前
学术智子完成签到,获得积分10
14秒前
科研小白完成签到 ,获得积分10
14秒前
摇光完成签到,获得积分10
14秒前
Lazarus_x完成签到,获得积分10
15秒前
gumiho1007完成签到,获得积分10
15秒前
莫道桑榆完成签到,获得积分10
16秒前
18秒前
严剑封完成签到,获得积分10
18秒前
凉拌红烧肉完成签到,获得积分10
20秒前
科研通AI2S应助whff采纳,获得10
20秒前
Ch185完成签到,获得积分10
20秒前
葛二蛋完成签到,获得积分10
23秒前
summer完成签到 ,获得积分10
24秒前
孤独念双完成签到,获得积分10
25秒前
25秒前
葛力完成签到,获得积分10
26秒前
xiaogui完成签到,获得积分10
28秒前
MT完成签到,获得积分10
30秒前
Ethan完成签到,获得积分10
31秒前
星星发布了新的文献求助10
32秒前
体贴的梦桃完成签到,获得积分20
32秒前
Coolkid2001完成签到,获得积分10
32秒前
33秒前
Cecilia完成签到,获得积分10
34秒前
粗暴的坤完成签到 ,获得积分10
34秒前
李健的粉丝团团长应助neko采纳,获得10
34秒前
早日发论文完成签到,获得积分10
35秒前
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242069
求助须知:如何正确求助?哪些是违规求助? 2886396
关于积分的说明 8243205
捐赠科研通 2555019
什么是DOI,文献DOI怎么找? 1383201
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417