兰姆达
索波列夫空间
能量(信号处理)
数学物理
物理
临界指数
符号(数学)
薛定谔猫
组合数学
数学分析
数学
量子力学
相变
作者
Xiaoping Chen,Chun‐Lei Tang
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2211.15316
摘要
In this paper, we are concerned with the following Schr\"{o}dinger-Poisson system with critical nonlinearity and critical nonlocal term due to the Hardy-Littlewood-Sobolev inequality \begin{equation}\begin{cases} -\Delta u+u+\lambda\phi |u|^3u =|u|^4u+ |u|^{q-2}u,\ \ &\ x \in \mathbb{R}^{3},\\[2mm] -\Delta \phi=|u|^5, \ \ &\ x \in \mathbb{R}^{3}, \end{cases} \end{equation} where $\lambda\in \mathbb{R}$ is a parameter and $q\in(2,6)$. If $\lambda\ge (\frac{q+2}{8})^2$ and $q\in(2,6)$, the above system has no nontrivial solution. If $\lambda\in (\lambda^*,0)$ for some $\lambda^*<0$, we obtain a least energy radial sign-changing solution $u_\lambda$ to the above system. Furthermore, we consider $\lambda$ as a parameter and analyze the asymptotic behavior of $u_\lambda$ as $\lambda\to 0^-$.
科研通智能强力驱动
Strongly Powered by AbleSci AI