吸附
污染物
微球
重金属
金属
环境化学
材料科学
化学工程
金属有机骨架
化学
有机化学
冶金
工程类
作者
Xiaole Zhao,Yingchun Su,Shubin Li,Yajun Bi,Xiaojun Han
标识
DOI:10.1016/j.jes.2018.01.010
摘要
Dyestuffs and heavy metal ions in water are seriously harmful to the ecological environment and human health. Three-dimensional (3D) flowerlike Fe(OH)3 microspheres were synthesized through a green yet low-cost injection method, for the removal of organic dyes and heavy metal ions. The Fe(OH)3 microspheres were characterized by thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The adsorption kinetics of Congo Red (CR) on Fe(OH)3 microspheres obeyed the pseudo-second-order model. Cr6+ and Pb2+ adsorption behaviors on Fe(OH)3 microspheres followed the Langmuir isotherm model. The maximum adsorption capacities of the synthesized Fe(OH)3 were 308, 52.94, and 75.64mg/g for CR, Cr6+, and Pb2+ respectively. The enhanced adsorption performance originated from its surface properties and large specific surface area of 250m2/g. The microspheres also have excellent adsorption stability and recyclability. Another merit of the Fe(OH)3 material is that it also acts as a Fenton-like catalyst. These twin functionalities (both as adsorbent and Fenton-like catalyst) give the synthesized Fe(OH)3 microspheres great potential in the field of water treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI