药物输送
癌症
纳米技术
药品
医学
抗癌药
药理学
材料科学
内科学
作者
Shailaja Dombe,Pramodkumar J Shirote
出处
期刊:Current Drug Targets
[Bentham Science]
日期:2021-01-01
被引量:5
标识
DOI:10.2174/1389450121999201012201455
摘要
Cancer is the most ruinous disease globally. Natural products have impressive characteristics, such as exceptional chemical versatility, chemical and biological properties of macromolecular specificity and less toxicity which make them good leads in finding novel drugs. The phytochemicals not only help to prevent but also treat chronic cancerous conditions. The present review attempts to put forth some selected anticancer phytochemicals that had reported omics characteristic and specifically suppressed cancer with in vitro and in vivo activity. Certain issues pertaining to anticancer phytochemicals like delivery to target site in the body and achieving controlled release in order to prevent overdoses have been a major concern for medical researchers worldwide. The most conventional chemotherapy protocols for the treatment of cancer lead to adverse effects that limit biological efficacy and compromise patient outcomes. In order to defeat incompetency of current and upcoming natural anticancer agents and to attain targeted drug delivery with good efficacy and fewer side effects, there is a special focus on novel nanostructured particles and nano approaches consisting of carrier system. Recent studies have led to the discovery of mesoporous and nanoporous drug delivery mechanisms, such as inorganic or organic-based nanosponges. The metal based inorganic systems have exhibited toxicity and non-biodegradable character in vivo. As a result of problems related to inorganic systems, major shift of research from inorganic to organic nanosystems has occurred. About decades ago, researchers developed organic nanosponges to control the limitation of drug delivery and cancer therapies. This review article discusses the development and application of nanosponges encapsulated phytochemicals for cancer therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI