Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification

计算机科学 干扰(通信) 人工智能 认知无线电 调制(音乐) 模式识别(心理学) 解调 频域 深度学习 一般化 频率调制 短时傅里叶变换 傅里叶变换 人工神经网络 语音识别 噪音(视频) 无线电频率 频道(广播) 电信 无线 数学 傅里叶分析 声学 计算机视觉 数学分析 物理 图像(数学)
作者
Qinghe Zheng,Penghui Zhao,Yang Li,Hongjun Wang,Yang Yang
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:33 (13): 7723-7745 被引量:165
标识
DOI:10.1007/s00521-020-05514-1
摘要

Automatic modulation classification is an essential and challenging topic in the development of cognitive radios, and it is the cornerstone of adaptive modulation and demodulation abilities to sense and learn surrounding environments and make corresponding decisions. In this paper, we propose a spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Since the frequency variation over time is the most important distinction between radio signals with various modulation schemes, we plan to expand samples by introducing different intensities of interference to the spectrum of radio signals. The original signal is first transformed into the frequency domain by using short-time Fourier transform, and the interference to the spectrum can be realized by bidirectional noise masks that satisfy the specific distribution. The augmented signals can be reconstructed through inverse Fourier transform based on the interfered spectrum, and then, the original and augmented signals are fed into the network. Finally, data augmentation at both training and testing stages can be used to improve the generalization performance of deep neural network. To the best of our knowledge, this is the first time that radio signals are augmented to help modulation classification by considering the frequency domain information. Moreover, we have proved that data augmentation at the test stage can be interpreted as model ensemble. By comparing with a variety of data augmentation techniques and state-of-the-art modulation classification methods on the public dataset RadioML 2016.10a, experimental results illustrate the effectiveness and advancement of proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助独特乘云采纳,获得10
1秒前
沐风发布了新的文献求助10
1秒前
吴世宇发布了新的文献求助10
1秒前
小文cremen发布了新的文献求助10
3秒前
朴素易梦完成签到 ,获得积分10
5秒前
bkagyin应助正直的西牛采纳,获得10
5秒前
LIU完成签到,获得积分10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
香蕉觅云应助个性的雅柏采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
whatever应助科研通管家采纳,获得20
6秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
whatever应助科研通管家采纳,获得20
7秒前
传奇3应助科研通管家采纳,获得20
7秒前
wos完成签到,获得积分10
7秒前
7秒前
犹豫芝麻应助科研通管家采纳,获得10
7秒前
7秒前
梓泽丘墟应助科研通管家采纳,获得10
7秒前
7秒前
文静的紫萱完成签到,获得积分10
8秒前
8秒前
所所应助hhhh_xt采纳,获得30
9秒前
蔫蔫完成签到,获得积分10
9秒前
Servant2023完成签到,获得积分10
9秒前
Faker完成签到 ,获得积分10
9秒前
小二郎应助锂sdsa采纳,获得10
9秒前
Nature完成签到,获得积分10
10秒前
PANDA发布了新的文献求助10
10秒前
传奇3应助小文cremen采纳,获得10
10秒前
六点完成签到,获得积分10
10秒前
空白完成签到,获得积分10
10秒前
11秒前
斯文败类应助1310采纳,获得10
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813599
关于积分的说明 7901187
捐赠科研通 2473168
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175