生物
DNA甲基化
差异甲基化区
遗传学
甲基化
表观遗传学
单核苷酸多态性
遗传变异
人口
表型
基因
基因型
基因表达
社会学
人口学
作者
Jing Xu,Chen Guo,Peter J. Hermanson,Qiang Xu,Changshuo Sun,Wenqing Chen,Qiuxin Kan,Minqi Li,Peter A. Crisp,Jianbing Yan,Lin Li,Nathan M. Springer,Qing Li
出处
期刊:Genome Biology
[Springer Nature]
日期:2019-11-19
卷期号:20 (1)
被引量:81
标识
DOI:10.1186/s13059-019-1859-0
摘要
DNA methylation can provide a source of heritable information that is sometimes entirely uncoupled from genetic variation. However, the extent of this uncoupling and the roles of DNA methylation in shaping diversity of both gene expression and phenotypes are hotly debated. Here, we investigate the genetic basis and biological functions of DNA methylation at a population scale in maize.We perform targeted DNA methylation profiling for a diverse panel of 263 maize inbred genotypes. All genotypes show similar levels of DNA methylation globally, highlighting the importance of DNA methylation in maize development. Nevertheless, we identify more than 16,000 differentially methylated regions (DMRs) that are distributed across the 10 maize chromosomes. Genome-wide association analysis with high-density genetic markers reveals that over 60% of the DMRs are not tagged by SNPs, suggesting the presence of unique information in DMRs. Strong associations between DMRs and the expression of many genes are identified in both the leaf and kernel tissues, pointing to the biological significance of methylation variation. Association analysis with 986 metabolic traits suggests that DNA methylation is associated with phenotypic variation of 156 traits. There are some traits that only show significant associations with DMRs and not with SNPs.These results suggest that DNA methylation can provide unique information to explain phenotypic variation in maize.
科研通智能强力驱动
Strongly Powered by AbleSci AI