Device-free single-user activity recognition using diversified deep ensemble learning

计算机科学 卷积神经网络 活动识别 随机森林 人工智能 信道状态信息 支持向量机 地点 深度学习 模式识别(心理学) 相关性 机器学习 无线 电信 哲学 语言学 数学 几何学
作者
Wei Cui,Bing Li,Le Zhang,Zhenghua Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:102: 107066-107066 被引量:27
标识
DOI:10.1016/j.asoc.2020.107066
摘要

WiFi-based human activity recognition (HAR) aims to recognize human activities in an off-the-shelf manner that only relies on the commercial Wi-Fi devices already installed in environments. The recent trend in HAR research is to train classifiers on top of statistical or deep neural features extracted from channel state information (CSI) data. Unfortunately, existing methods only take into account the temporal-correlation within each CSI subcarrier, while ignoring the spatial-correlation between different subcarriers. This issue has not been fully exploited yet, resulting a limited performance. To address this issue, we propose WiAReS, a WiFi-based device-free activity recognition system that takes both temporal-correlation and spatial-correlation into account. WiAReS embarks on diversified deep ensemble methods 2̌for single-user activity recognition where one user performs a single activity at a given time. More specifically, it adopts convolutional neural network (CNN) to automatically extract features from CSI measurements with the preservation of the locality of both spatial patterns and temporal patterns. To further improve recognition accuracy upon CNN-extracted features, we propose a novel ensemble architecture that fuses a multiple layer perception (MLP), a random forest (RF) and a support vector machine (SVM). Our system obtains the CSI data in PHY layer of off-the-shelf WiFi devices by installing Atheros-CSI-Tool on AR9590 based WiFi network interface cards (NICs). Comprehensive experiments have been conducted in three real environments with environmental variation to evaluate the performance of the proposed WiAReS. The experimental results demonstrate that the proposed WiARes system significantly outperforms existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
体贴糖豆发布了新的文献求助10
刚刚
76542cu发布了新的文献求助10
刚刚
科目三应助争气采纳,获得30
刚刚
Sherry1关注了科研通微信公众号
刚刚
GYH发布了新的文献求助200
1秒前
1秒前
搜集达人应助花菜采纳,获得10
1秒前
MINTJOCO关注了科研通微信公众号
2秒前
2秒前
于玕完成签到,获得积分10
2秒前
8941完成签到 ,获得积分10
2秒前
Stella应助干净的冷松采纳,获得10
3秒前
刘扬关注了科研通微信公众号
3秒前
3秒前
4秒前
五花肉发布了新的文献求助10
4秒前
wwaakk完成签到,获得积分10
4秒前
4秒前
paparazzi221发布了新的文献求助10
4秒前
4秒前
Geist完成签到,获得积分10
5秒前
Kkkkkk发布了新的文献求助10
5秒前
迷你的听荷完成签到,获得积分10
5秒前
科目三应助飘逸咖啡采纳,获得10
5秒前
科研通AI6应助意忆采纳,获得10
6秒前
6秒前
7秒前
辰叶发布了新的文献求助10
7秒前
Orange应助AAAAAAAAAAA采纳,获得10
7秒前
7秒前
7秒前
人可司南发布了新的文献求助10
8秒前
CodeCraft应助fortune采纳,获得10
8秒前
阿九发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
脑洞疼应助发粪涂墙采纳,获得10
9秒前
体贴糖豆完成签到,获得积分10
10秒前
干净的冷松完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597864
求助须知:如何正确求助?哪些是违规求助? 4683398
关于积分的说明 14829432
捐赠科研通 4661776
什么是DOI,文献DOI怎么找? 2536884
邀请新用户注册赠送积分活动 1504494
关于科研通互助平台的介绍 1470237