Device-free single-user activity recognition using diversified deep ensemble learning

计算机科学 卷积神经网络 活动识别 随机森林 人工智能 信道状态信息 支持向量机 地点 深度学习 模式识别(心理学) 相关性 机器学习 无线 电信 哲学 语言学 数学 几何学
作者
Wei Cui,Bing Li,Le Zhang,Zhenghua Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:102: 107066-107066 被引量:27
标识
DOI:10.1016/j.asoc.2020.107066
摘要

WiFi-based human activity recognition (HAR) aims to recognize human activities in an off-the-shelf manner that only relies on the commercial Wi-Fi devices already installed in environments. The recent trend in HAR research is to train classifiers on top of statistical or deep neural features extracted from channel state information (CSI) data. Unfortunately, existing methods only take into account the temporal-correlation within each CSI subcarrier, while ignoring the spatial-correlation between different subcarriers. This issue has not been fully exploited yet, resulting a limited performance. To address this issue, we propose WiAReS, a WiFi-based device-free activity recognition system that takes both temporal-correlation and spatial-correlation into account. WiAReS embarks on diversified deep ensemble methods 2̌for single-user activity recognition where one user performs a single activity at a given time. More specifically, it adopts convolutional neural network (CNN) to automatically extract features from CSI measurements with the preservation of the locality of both spatial patterns and temporal patterns. To further improve recognition accuracy upon CNN-extracted features, we propose a novel ensemble architecture that fuses a multiple layer perception (MLP), a random forest (RF) and a support vector machine (SVM). Our system obtains the CSI data in PHY layer of off-the-shelf WiFi devices by installing Atheros-CSI-Tool on AR9590 based WiFi network interface cards (NICs). Comprehensive experiments have been conducted in three real environments with environmental variation to evaluate the performance of the proposed WiAReS. The experimental results demonstrate that the proposed WiARes system significantly outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HITvagary完成签到,获得积分10
刚刚
华仔应助欣喜访旋采纳,获得10
刚刚
刚刚
1秒前
良辰应助科研cc采纳,获得10
1秒前
NN应助西门晴采纳,获得10
1秒前
瘦瘦白昼发布了新的文献求助10
1秒前
1111应助科研小民工采纳,获得20
2秒前
逸风望完成签到,获得积分10
2秒前
2秒前
3秒前
慕青应助开朗的慕儿采纳,获得10
3秒前
3秒前
YAOYAO完成签到,获得积分0
3秒前
紫色系完成签到,获得积分10
3秒前
黄豆芽发布了新的文献求助10
4秒前
4秒前
Jin完成签到,获得积分10
5秒前
Akim应助外向如冬采纳,获得10
6秒前
6秒前
6秒前
浩浩大人完成签到,获得积分20
8秒前
8秒前
狂野的雅绿完成签到 ,获得积分10
8秒前
WMT完成签到 ,获得积分10
8秒前
正在输入中完成签到,获得积分10
8秒前
Lucas应助小小学术人采纳,获得10
9秒前
阳光刺眼完成签到 ,获得积分10
9秒前
Akim应助Promise采纳,获得10
9秒前
斯文败类应助小汪采纳,获得10
9秒前
9秒前
小宇发布了新的文献求助10
10秒前
10秒前
Tira完成签到,获得积分10
10秒前
SciGPT应助23采纳,获得10
10秒前
科研cc完成签到,获得积分20
11秒前
咕噜仔发布了新的文献求助10
11秒前
牛肉干关注了科研通微信公众号
12秒前
cherry发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672