Device-free single-user activity recognition using diversified deep ensemble learning

计算机科学 卷积神经网络 活动识别 随机森林 人工智能 信道状态信息 支持向量机 地点 深度学习 模式识别(心理学) 相关性 机器学习 无线 电信 语言学 哲学 几何学 数学
作者
Wei Cui,Bing Li,Le Zhang,Zhenghua Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:102: 107066-107066 被引量:27
标识
DOI:10.1016/j.asoc.2020.107066
摘要

WiFi-based human activity recognition (HAR) aims to recognize human activities in an off-the-shelf manner that only relies on the commercial Wi-Fi devices already installed in environments. The recent trend in HAR research is to train classifiers on top of statistical or deep neural features extracted from channel state information (CSI) data. Unfortunately, existing methods only take into account the temporal-correlation within each CSI subcarrier, while ignoring the spatial-correlation between different subcarriers. This issue has not been fully exploited yet, resulting a limited performance. To address this issue, we propose WiAReS, a WiFi-based device-free activity recognition system that takes both temporal-correlation and spatial-correlation into account. WiAReS embarks on diversified deep ensemble methods 2̌for single-user activity recognition where one user performs a single activity at a given time. More specifically, it adopts convolutional neural network (CNN) to automatically extract features from CSI measurements with the preservation of the locality of both spatial patterns and temporal patterns. To further improve recognition accuracy upon CNN-extracted features, we propose a novel ensemble architecture that fuses a multiple layer perception (MLP), a random forest (RF) and a support vector machine (SVM). Our system obtains the CSI data in PHY layer of off-the-shelf WiFi devices by installing Atheros-CSI-Tool on AR9590 based WiFi network interface cards (NICs). Comprehensive experiments have been conducted in three real environments with environmental variation to evaluate the performance of the proposed WiAReS. The experimental results demonstrate that the proposed WiARes system significantly outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动傀斗完成签到,获得积分10
1秒前
彭于晏应助韩胖喵采纳,获得10
1秒前
2秒前
车车完成签到,获得积分10
3秒前
糟糕的涵柏完成签到,获得积分10
3秒前
awoe完成签到,获得积分10
3秒前
3秒前
打打应助zz采纳,获得10
3秒前
一只五条悟完成签到,获得积分10
4秒前
qq发布了新的文献求助10
5秒前
5秒前
冷静的小虾米完成签到 ,获得积分10
5秒前
lxcy0612完成签到,获得积分10
5秒前
NNUsusan发布了新的文献求助10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
momo应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Yuying完成签到 ,获得积分10
8秒前
8秒前
he完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620