亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

STone Episode Prediction: Development and validation of the prediction nomogram for urolithiasis

列线图 医学 逻辑回归 接收机工作特性 曲线下面积 金标准(测试) 糖尿病 泌尿科 内科学 内分泌学
作者
Kazutaka Okita,Shingo Hatakeyama,Atsushi Imai,Toshikazu Tanaka,Itsuto Hamano,Teppei Okamoto,Yuki Tobisawa,Tohru Yoneyama,Hayato Yamamoto,Takahiro Yoneyama,Yasuhiro Hashimoto,Shigeyuki Nakaji,Tadashi Suzuki,Chikara Οhyama
出处
期刊:International Journal of Urology [Wiley]
卷期号:27 (4): 344-349 被引量:5
标识
DOI:10.1111/iju.14203
摘要

Objectives To develop and validate a nomogram predicting the occurrence of a stone episode, given the lack of such predicting risk tools for urolithiasis. Methods We retrospectively analyzed 1305 patients with urolithiasis and 2800 community‐dwelling individuals who underwent a comprehensive health survey. The STone Episode Prediction nomogram was created based on data from the medical records of 600 patients with urolithiasis and 1300 controls, and was validated using a different population of 705 patients with urolithiasis and 1500 controls. Logistic regression analysis was used to construct a model to predict the potential candidate for a stone episode. The predictive ability of the model was evaluated using the results of the area under the receiver operating characteristics curve (area under the curve). Results Age, sex, diabetes mellitus, renal function, serum albumin, and serum uric acid were found to be significantly associated with urolithiasis in the training set and were included in the STone Episode Prediction nomogram. The optimal cut‐off value for the probability of a stone episode using the nomogram was >28% with a sensitivity of 79%, a specificity of 76%, and area under the curve of 0.860. In the validation test, area under the curve for the detection of urolithiasis was 0.815 with a sensitivity of 81% and specificity of 63%. Conclusions Herein, we developed and validated the STone Episode Prediction nomogram that can predict a potential candidate for an episode of urolithiasis. This nomogram might be beneficial for the first step in stone screening in individuals with lifestyle‐related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研小白发布了新的文献求助10
7秒前
源源源完成签到 ,获得积分10
13秒前
长情黄蜂发布了新的文献求助10
16秒前
FashionBoy应助zf2023采纳,获得10
18秒前
18秒前
24秒前
Drxie发布了新的文献求助10
29秒前
英俊的铭应助AA采纳,获得10
30秒前
一夜很静应助蔡从安采纳,获得10
38秒前
一夜很静应助蔡从安采纳,获得10
38秒前
香蕉觅云应助yuebaoji采纳,获得10
38秒前
38秒前
赘婿应助刘泽千采纳,获得30
42秒前
AA发布了新的文献求助10
42秒前
gaw2008完成签到,获得积分10
43秒前
完美世界应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
天天快乐应助科研通管家采纳,获得10
46秒前
48秒前
蔡从安完成签到,获得积分20
53秒前
yuebaoji发布了新的文献求助10
53秒前
56秒前
58秒前
zf2023发布了新的文献求助10
1分钟前
思源应助陌上花开采纳,获得10
1分钟前
刘泽千完成签到,获得积分10
1分钟前
梦回发布了新的文献求助80
1分钟前
1分钟前
1分钟前
1分钟前
伊笙完成签到 ,获得积分10
1分钟前
zf2023完成签到,获得积分10
1分钟前
1分钟前
呵呵完成签到,获得积分10
1分钟前
曲聋五发布了新的文献求助10
1分钟前
刘泽千发布了新的文献求助30
1分钟前
抹茶麻薯完成签到,获得积分20
1分钟前
科研小白发布了新的文献求助10
1分钟前
樱桃猴子应助长情黄蜂采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832