已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A data-driven approach for pipe deformation prediction based on soil properties and weather conditions

适应性 均方误差 变形(气象学) 环境科学 结构健康监测 特征选择 管网分析 岩土工程 工程类 结构工程 土木工程 计算机科学 机器学习 气象学 统计 数学 生态学 物理 热力学 生物
作者
Fang Shi,Xiang Peng,Zheng Liu,Eric Li,Yafei Hu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:55: 102012-102012 被引量:20
标识
DOI:10.1016/j.scs.2019.102012
摘要

The health condition of infrastructure including water transmission and distribution mains has a great impact on the quality of human life. The performance of these water infrastructure is affected by the surrounding soil environment as well as the weather or climate changes. To investigate the structural response of water mains to varying soil movements, field data were collected with a sensor monitoring system. This included pipe wall strain in-situ soil water content, soil pressure, and temperature. Combined with weather factors, an automatic variable selection method, i.e., recursive feature elimination, was first applied to identify critical predictors contributing to pipe deformation. Then, a super learning algorithm was employed to characterize the relationship between pipe deformation and environmental factors. Both base and super learners were built to predict three types of pipe deformation which verified the adaptability of two modeling methods to different predictive models. Predictive performance was evaluated through R-squared, root-mean-square error, and mean absolute error values. The performance metrics demonstrate the advantage of the super learning algorithm in comparison with the baseline methods, especially its capability to further incorporate extra base learners and predictors in a more complex setting. This study shows that the pipe structure behavior could be successfully inferred from surrounding soil properties and weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
2秒前
6秒前
yerenjie完成签到 ,获得积分10
6秒前
6秒前
zzz完成签到,获得积分10
7秒前
橡皮鱼发布了新的文献求助10
7秒前
沐沐心完成签到 ,获得积分10
8秒前
可靠的白竹完成签到 ,获得积分10
8秒前
深情安青应助rational采纳,获得10
9秒前
结实初翠完成签到,获得积分10
10秒前
科研通AI5应助研友_ndDGVn采纳,获得10
12秒前
JACk完成签到 ,获得积分10
13秒前
14秒前
黑娃发布了新的文献求助10
15秒前
1111111完成签到,获得积分20
15秒前
虚心焦完成签到 ,获得积分10
18秒前
橡皮鱼完成签到,获得积分10
19秒前
爆米花应助大肥羊采纳,获得10
19秒前
华鹊鹊完成签到,获得积分20
20秒前
rational发布了新的文献求助10
20秒前
bkagyin应助丹晨采纳,获得10
21秒前
顾矜应助就有提高采纳,获得10
22秒前
想游泳的鹰完成签到,获得积分10
24秒前
华鹊鹊发布了新的文献求助10
24秒前
星流xx完成签到 ,获得积分10
33秒前
ASZXDW完成签到,获得积分10
35秒前
aslink完成签到,获得积分10
36秒前
英姑应助华鹊鹊采纳,获得10
39秒前
41秒前
胖胖应助多看文献采纳,获得10
42秒前
46秒前
46秒前
科研汪发布了新的文献求助30
49秒前
bake发布了新的文献求助10
52秒前
活力怜翠发布了新的文献求助10
52秒前
米米发布了新的文献求助10
53秒前
烟花应助科研通管家采纳,获得10
53秒前
Leon应助科研通管家采纳,获得10
53秒前
53秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544342
求助须知:如何正确求助?哪些是违规求助? 3121530
关于积分的说明 9347730
捐赠科研通 2819797
什么是DOI,文献DOI怎么找? 1550426
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265