Mcships: A Large-Scale Ship Dataset For Detection And Fine-Grained Categorization In The Wild

分类 计算机科学 最小边界框 班级(哲学) 跳跃式监视 人工智能 比例(比率) 变化(天文学) 基线(sea) 优势和劣势 模式识别(心理学) 图像(数学) 地理 地图学 地质学 海洋学 认识论 物理 哲学 天体物理学
作者
Yitong Zheng,Shun Zhang
标识
DOI:10.1109/icme46284.2020.9102907
摘要

This paper introduces a multi-category ship dataset (called McShips), which is a challenging and large-scale dataset aimed at ship detection and fine-grained categorization. The McShips dataset includes 14,709 annotated images of ships belonging to 6 classes of warships and 7 classes of civilian ships. Each image is carefully annotated with a bounding box and ship class label. The dataset is challenging due to the following two reasons: First, there is little inter-class variation as ships have very similar ship shapes; Second, there is very large intra-class variation since the ships within the same class may be significantly different due to viewpoint variations, weather condition variations, illumination variations, scale changes, occlusion, cluttered background and so on. Based on the McShips dataset, we present the detection and fine-grained categorization performance of three baseline detectors on our dataset, and make a comparison to identify the strengths and weaknesses of the baseline detection algorithms. We hope the presented McShips dataset would advance research and applications on ship detection and finegrained categorization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iedq完成签到 ,获得积分10
刚刚
嗯呢发布了新的文献求助10
刚刚
vivienne完成签到,获得积分10
刚刚
搜集达人应助2021的萌爷爷采纳,获得10
刚刚
烟花不能太放肆关注了科研通微信公众号
刚刚
zyy完成签到,获得积分10
刚刚
1秒前
1秒前
wanci应助细腻晓露采纳,获得10
1秒前
Lucas应助XinyiZhang采纳,获得10
2秒前
科研通AI2S应助芋头采纳,获得10
3秒前
瘦瘦的铅笔完成签到 ,获得积分10
3秒前
manan发布了新的文献求助10
3秒前
01259发布了新的文献求助30
3秒前
3秒前
斯文败类应助zyh945采纳,获得10
3秒前
南山无梅落完成签到 ,获得积分10
3秒前
淡定吃吃完成签到,获得积分10
3秒前
科研通AI5应助称心砖头采纳,获得10
4秒前
淡淡从蕾完成签到,获得积分10
4秒前
Ehgnix完成签到,获得积分10
4秒前
嘴嘴是大嘴007完成签到,获得积分10
5秒前
5秒前
但愿完成签到 ,获得积分10
5秒前
犹豫的一斩应助Pangsj采纳,获得10
6秒前
Jenny应助wjs0406采纳,获得10
6秒前
6秒前
酒九发布了新的文献求助10
6秒前
落晨发布了新的文献求助10
7秒前
包容可乐完成签到,获得积分10
7秒前
8秒前
眼睛大的一曲完成签到,获得积分10
8秒前
9秒前
英俊的铭应助wu采纳,获得10
9秒前
认真的飞扬完成签到,获得积分10
9秒前
9秒前
雪白的西牛完成签到,获得积分20
9秒前
芋头完成签到,获得积分10
9秒前
ntxiaohu完成签到,获得积分10
10秒前
四火完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740