Experimental determination of Escherichia coli biomass composition for constraint-based metabolic modeling

生物信息学 通量平衡分析 生物量(生态学) 生物系统 有机体 计算生物学 大肠杆菌 生化工程 焊剂(冶金) 功能(生物学) 代谢工程 代谢通量分析 代谢网络 生物 计算机科学 化学 遗传学 生物化学 基因 新陈代谢 生态学 有机化学 工程类
作者
Vetle Simensen,Christian Schulz,Emil Karlsen,Signe Bråtelund,Idun Burgos,Lilja Brekke Thorfinnsdottir,Laura García-Calvo,Per Bruheim,Eivind Almaas
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (1): e0262450-e0262450 被引量:15
标识
DOI:10.1371/journal.pone.0262450
摘要

Genome-scale metabolic models (GEMs) are mathematical representations of metabolism that allow for in silico simulation of metabolic phenotypes and capabilities. A prerequisite for these predictions is an accurate representation of the biomolecular composition of the cell necessary for replication and growth, implemented in GEMs as the so-called biomass objective function (BOF). The BOF contains the metabolic precursors required for synthesis of the cellular macro- and micromolecular constituents (e.g. protein, RNA, DNA), and its composition is highly dependent on the particular organism, strain, and growth condition. Despite its critical role, the BOF is rarely constructed using specific measurements of the modeled organism, drawing the validity of this approach into question. Thus, there is a need to establish robust and reliable protocols for experimental condition-specific biomass determination. Here, we address this challenge by presenting a general pipeline for biomass quantification, evaluating its performance on Escherichia coli K-12 MG1655 sampled during balanced exponential growth under controlled conditions in a batch-fermentor set-up. We significantly improve both the coverage and molecular resolution compared to previously published workflows, quantifying 91.6% of the biomass. Our measurements display great correspondence with previously reported measurements, and we were also able to detect subtle characteristics specific to the particular E. coli strain. Using the modified E. coli GEM i ML1515a, we compare the feasible flux ranges of our experimentally determined BOF with the original BOF, finding that the changes in BOF coefficients considerably affect the attainable fluxes at the genome-scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坐忘完成签到 ,获得积分10
2秒前
momo完成签到,获得积分10
2秒前
轩辕寄风应助LYY采纳,获得50
2秒前
Spectrum_07完成签到,获得积分10
3秒前
奋斗映寒发布了新的文献求助10
3秒前
小哲子发布了新的文献求助10
4秒前
所所应助小赵采纳,获得10
5秒前
InfoNinja应助梨米特采纳,获得30
6秒前
传奇3应助无心采纳,获得10
6秒前
科研小生完成签到,获得积分10
6秒前
7秒前
氧化铜发布了新的文献求助10
7秒前
天天快乐应助lgm采纳,获得10
9秒前
充电宝应助ssy采纳,获得10
11秒前
元谷雪应助呆瓜采纳,获得10
11秒前
tzjz_zrz完成签到,获得积分10
12秒前
12秒前
12秒前
乔心完成签到 ,获得积分20
13秒前
14秒前
14秒前
14秒前
Singularity应助孙兆杰采纳,获得10
15秒前
lulu发布了新的文献求助10
15秒前
小犁牛完成签到 ,获得积分10
16秒前
李理发布了新的文献求助10
17秒前
17秒前
17秒前
11完成签到 ,获得积分10
18秒前
读研好难发布了新的文献求助10
18秒前
小赵发布了新的文献求助10
18秒前
18秒前
小晶豆发布了新的文献求助10
18秒前
善学以致用应助ffff采纳,获得10
19秒前
小哲子完成签到,获得积分10
20秒前
微微完成签到 ,获得积分10
20秒前
冲刺的仙人掌完成签到 ,获得积分10
20秒前
喂喂巍发布了新的文献求助10
21秒前
irisjlj发布了新的文献求助10
21秒前
长孙曼香完成签到,获得积分10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260