Deformable histopathology-MRI image registration using deep learning

图像配准 人工智能 计算机视觉 计算机科学 组织病理学 图像(数学) 医学 病理
作者
Yabo Fu,Yang Lei,David Schuster,Sagar Patel,Jeffrey D. Bradley,Tian Liu,Xiaofeng Yang
标识
DOI:10.1117/12.2611895
摘要

It is important to correlate histopathology images with radiological images to establish disease signatures and radiomic features defined on radiological images. Although modern imaging modalities such as CT and MRI can provide detailed patient anatomy information, the pathological interpretation of these images may be difficult and subject to physician's experiences. In contrast, histopathology images which provide tissue structure at cellular level is considered the gold standard for cancer diagnosis. Therefore, histopathological images fusion with radiological images helps interpretation and computer-aided disease classification and segmentation. In this study, we propose a new MR volume to histopathology slice image registration method using unsupervised deep learning (DL). The pathology images were first manually rotated to align with the MRI. Histopathology slice correspondence to the MRI slice was then established by calculating image similarity between the two. Because of the endorectal MRI coil, the MRI prostate is often pressed, causing deformation, from the posterior side. Even without endorectal coil, the bladder could cause the shape mismatch between the histology and MRI. Therefore, it is important to model the prostate deformation. In this study, a thin-plate-spline deformation model was calculated from prostate surface difference between the MRI slice and the histopathology. To match the image content, a DL-based method was proposed to deformably register the histopathology image to the MRI. The proposed method utilizes modality independent neighborhood descriptor (MIND) as the image similarity measure during network training. Tested on 10 cases, the SSIM between the two were on average 0.83 and 0.90 before and after registration. Visual inspection suggests good image registration performance of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cindy发布了新的文献求助10
刚刚
西门博超发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
这小猪真帅完成签到,获得积分10
3秒前
尊敬惜萍发布了新的文献求助10
3秒前
3秒前
伶俐剑心完成签到,获得积分20
3秒前
4秒前
4秒前
科研通AI5应助椒盐柠檬茶采纳,获得10
5秒前
5秒前
6秒前
jason完成签到,获得积分10
7秒前
林歌ovo发布了新的文献求助30
8秒前
zzw发布了新的文献求助10
8秒前
车宇发布了新的文献求助10
8秒前
9秒前
赵田发布了新的文献求助30
9秒前
kaka发布了新的文献求助10
9秒前
9秒前
柒月发布了新的文献求助10
10秒前
研友_VZG7GZ应助大气乐儿采纳,获得10
11秒前
11秒前
11秒前
你好发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
充电宝应助小田采纳,获得10
14秒前
YY完成签到,获得积分20
14秒前
Pursue完成签到,获得积分10
15秒前
科研通AI5应助白云朵儿采纳,获得30
15秒前
16秒前
kchrisuzad完成签到,获得积分10
16秒前
16秒前
柒月完成签到,获得积分20
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525253
求助须知:如何正确求助?哪些是违规求助? 3105885
关于积分的说明 9277037
捐赠科研通 2803261
什么是DOI,文献DOI怎么找? 1538467
邀请新用户注册赠送积分活动 716262
科研通“疑难数据库(出版商)”最低求助积分说明 709371