亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images

计算机科学 变更检测 水准点(测量) 特征(语言学) 判别式 模式识别(心理学) 编码器 人工智能 遥感 大地测量学 语言学 操作系统 地质学 哲学 地理
作者
Ziming Li,Chenxi Yan,Ying Sun,Qinchuan Xin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:77
标识
DOI:10.1109/tgrs.2022.3159544
摘要

Detecting changes using bitemporal remote sensing imagery is vital to understand the dynamics of the land surface. Existing change detection models based on deep learning suffer from the problem of scale variation and pseudochange due to their insufficient multilevel aggregation and inadequate capability of feature representation, which limits the accuracy. This study proposes a densely attentive refinement network (DARNet) to improve change detection on bitemporal very-high-resolution remote sensing images. DARNet is based on the U-shape encoder–decoder architecture with the Siamese network as a feature extractor. The dense skip connection module (DSCM) is employed between the decoder and the encoder to aggregate multilevel feature maps. The hybrid attention module (HAM) is integrated to exploit contextual information and generate discriminative features. The recurrent refinement module (RRM) is exploited to progressively refine the predicted change maps during the decoding process. Experiments on testing the model performance were conducted on three benchmark datasets: the season-varying change detection (SVCD) dataset, the Sun Yat-sen University change detection (SYSU-CD) dataset, and the Learning Vision and Remote Sensing Laboratory building change detection (LEVIR-CD) dataset. The experimental results demonstrate that DARNet outperforms state-of-the-art models with kappa of 96.58%, 75.35%, and 90.69% for the SVCD, SYSU-CD, and LEVIR-CD datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kong完成签到,获得积分10
2秒前
2秒前
6秒前
8秒前
8秒前
CodeCraft应助zzzz采纳,获得10
10秒前
H4ppy_n3w_y34r完成签到,获得积分10
10秒前
11秒前
Ghiocel完成签到,获得积分10
12秒前
14秒前
llpj完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
自信寻真发布了新的文献求助20
18秒前
甜蜜舞蹈完成签到 ,获得积分10
19秒前
zzzz发布了新的文献求助10
22秒前
蛋仔发布了新的文献求助30
25秒前
wwf发布了新的文献求助10
25秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
lin完成签到,获得积分10
30秒前
32秒前
37秒前
wwf完成签到,获得积分20
42秒前
44秒前
47秒前
Skymi发布了新的文献求助10
48秒前
48秒前
Jasper应助GDL采纳,获得10
48秒前
热情的c99发布了新的文献求助10
53秒前
53秒前
英姑应助cxin采纳,获得10
54秒前
pzz发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671