X‐ray‐based machine vision technique for detection of internal defects of sterculia seeds

人工智能 机器视觉 计算机科学 分类 计算机视觉 模式识别(心理学) 情报检索
作者
Qilong Xue,Peiqi Miao,Kunhong Miao,Yang Yu,Zheng Li
出处
期刊:Journal of Food Science [Wiley]
卷期号:87 (8): 3386-3395 被引量:9
标识
DOI:10.1111/1750-3841.16237
摘要

An online machine learning system based on X-ray nondestructive quality evaluation technique was developed to detect internal defects of boat-fruited sterculia seed. The X-ray images of boat-fruited sterculia seed were first acquired by the detection system. Then, a boat-fruited sterculia seed net (BSSNet) was trained to identify the defective boat-fruited sterculia seeds based on the X-ray images. The BSSNet was evaluated with the accuracy, precision, specificity, and sensitivity as 94.64%, 93.51%, 92.37%, and 96.64%, respectively. Further, three classical CNN models including VGG16, Resnet, and Inception were trained on the same dataset with accuracy of 95.71%, 94.29%, and 94.64%, respectively. Compared with the classical CNN models, the BSSNet achieved similar or higher accuracy in X-ray images classification. Finally, an independent dataset containing 200 X-ray images was used to validate the performance of the BSSNet and obtained an accuracy of 96.5%. The results presented above demonstrated that this classification method has a great potential for industrial applications. PRACTICAL APPLICATION: An X-ray online detection system integrated with a machine vision model was used to evaluate the quality of boat-fruited sterculia seed. A low-power x-ray detection system can detect internal defects of the object and ensure safety in the production process. The developed machine vision can sort the boat-fruited sterculia seed with an accuracy of 96.5%. The proposed nondestructive detection system showed a good potential to be used in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助时光采纳,获得10
刚刚
张泽辉发布了新的文献求助10
刚刚
DI发布了新的文献求助10
1秒前
Zangzang完成签到,获得积分10
1秒前
倒数第二完成签到,获得积分10
2秒前
2秒前
2秒前
研路辛苦了完成签到,获得积分10
2秒前
悦耳听芹发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
充电宝应助xyh采纳,获得10
4秒前
fcyyc发布了新的文献求助10
4秒前
苦逼大王发布了新的文献求助10
4秒前
泥沼发布了新的文献求助10
5秒前
5秒前
5秒前
猪猪hero发布了新的文献求助10
6秒前
阿冰发布了新的文献求助10
8秒前
8秒前
八格牙路完成签到,获得积分10
8秒前
所所应助阿尔卑斯采纳,获得10
8秒前
YangSihan发布了新的文献求助10
8秒前
9秒前
gui发布了新的文献求助10
9秒前
Jasper应助heartbeat采纳,获得10
10秒前
科研狗发布了新的文献求助20
10秒前
Shion发布了新的文献求助10
10秒前
符双双完成签到 ,获得积分10
11秒前
小阳科研完成签到,获得积分10
11秒前
神勇逊关注了科研通微信公众号
11秒前
略略略发布了新的文献求助10
12秒前
12秒前
12秒前
maox1aoxin应助阎艺丹采纳,获得30
12秒前
lo王一博_赵丽颖ve完成签到 ,获得积分10
13秒前
13秒前
田様应助苹果追命采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627