平滑的
计算机科学
噪音(视频)
噪声测量
贝叶斯概率
算法
推论
贝叶斯定理
过程(计算)
贝叶斯推理
协方差
状态空间
近似推理
人工智能
数学优化
数学
降噪
统计
计算机视觉
图像(数学)
操作系统
作者
Tohid Ardeshiri,Emre Özkan,Umut Orguner,Fredrik Gustafsson
标识
DOI:10.1109/lsp.2015.2490543
摘要
We present an adaptive smoother for linear state-space models with unknown process and measurement noise covariances. The proposed method utilizes the variational Bayes technique to perform approximate inference. The resulting smoother is computationally efficient, easy to implement, and can be applied to high dimensional linear systems. The performance of the algorithm is illustrated on a target tracking example.
科研通智能强力驱动
Strongly Powered by AbleSci AI