Beyond Quantum Dots Semiconducting colloidal nanoparticles—quantum dots—are of interest for their unusual properties. One current challenge is the controlled assembly of colloidal particles into larger structures, such as two-dimensional lattices on a substrate, or three-dimensional superparticles. Wang et al. (p. 358 ) present a two-step self-assembly of CdSe/CdS semiconductor nanorods to form mesoscopic colloidal superparticles. The particles show well-defined super-crystalline domains with dimensions ranging from hundreds of nanometers to several microns, and with the particle morphology controlled by the number of constituent rods. Films of the needle-shaped superparticles were able to act as polarizing light-emitting diodes.